Skip to main content
Log in

Expanded coverage of non-targeted LC-HRMS using atmospheric pressure chemical ionization: a case study with ENTACT mixtures

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Non-targeted analysis (NTA) is a rapidly evolving analytical technique with numerous opportunities to improve and expand instrumental and data analysis methods. In this work, NTA was performed on eight synthetic mixtures containing 1264 unique chemical substances from the U.S. Environmental Protection Agency’s Non-Targeted Analysis Collaborative Trial (ENTACT). These mixtures were analyzed by atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) using both positive and negative polarities for a total of four modes. Out of the 1264 ENTACT chemical substances, 1116 were detected in at least one ionization mode, 185 chemicals were detected using all four ionization modes, whereas 148 were not detected. Forty-four chemicals were detected only by APCI, and 181 were detected only by ESI. Molecular descriptors and physicochemical properties were used to assess which ionization type was preferred for a given compound. One ToxPrint substructure (naphthalene group) was found to be enriched in compounds only detected using APCI, and eight ToxPrints (e.g., several alcohol moieties) were enriched in compounds only detected using ESI. Examination of physicochemical parameters for ENTACT chemicals suggests that those with higher aqueous solubility preferentially ionized by ESI−. While ESI typically detects a larger number of compounds, APCI offers chromatograms with less background, fewer co-elutions, and additional chemical space coverage, suggesting both should be considered for broader coverage in future NTA research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the EPA’s ScienceHub and/or the accompanying supporting information.

References

  1. Sobus JR, Wambaugh JF, Isaacs KK, Williams AJ, McEachran AD, Richard AM, et al. Integrating tools for non-targeted analysis research and chemical safety evaluations at the U.S. EPA. J Expo Sci Environ Epidemiol. 2018;28:411–26. https://doi.org/10.1038/s41370-017-0012-y.

    Article  CAS  PubMed  Google Scholar 

  2. Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: an analytical primer to studying the environmental chemical space of the human exposome. Environ Int. 2017;100:32–61. https://doi.org/10.1016/j.envint.2016.11.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kind T, Fiehn O. Seven Golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. Bmc Bioinformatics. 2007;8:105. https://doi.org/10.1186/1471-2105-8-105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2004;56(410):219–43. https://doi.org/10.1093/jxb/eri069.

    Article  CAS  PubMed  Google Scholar 

  5. Souverain S, Rudaz S, Veuthey J-L. Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures. J Chromatogr A. 2004;1058(1):61–6. https://doi.org/10.1016/j.chroma.2004.08.118.

    Article  CAS  PubMed  Google Scholar 

  6. Ismaiel OA, Halquist MS, Elmamly MY, Shalaby A, Karnes HT. Monitoring phospholipids for assessment of ion enhancement and ion suppression in ESI and APCI LC/MS/MS for chlorpheniramine in human plasma and the importance of multiple source matrix effect evaluations. J Chromatogr B. 2008;875(2):333–43.

    Article  CAS  Google Scholar 

  7. Cai S-S, Syage JA. Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids. Anal Chem. 2006;78(4):1191–9.

    Article  CAS  Google Scholar 

  8. Herrera LC, Grossert JS, Ramaley L. Quantitative aspects of and ionization mechanisms in positive-ion atmospheric pressure chemical ionization mass spectrometry. J Am Soc Mass Spectrom. 2008;19(12):1926–41.

    Article  CAS  Google Scholar 

  9. Fernández M, Pico Y, Mañes J. Comparison of gas and liquid chromatography coupled to mass spectrometry for the residue analysis of pesticides in organges. Chromatographia. 2001;54(5):302–8. https://doi.org/10.1007/bf02492674.

    Article  Google Scholar 

  10. Zhou SN, Reiner EJ, Marvin C, Helm P, Riddell N, Dorman F, et al. Development of liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for analysis of halogenated flame retardants in wastewater. Anal Bioanal Chem. 2010;396(3):1311–20. https://doi.org/10.1007/s00216-009-3279-6.

    Article  CAS  PubMed  Google Scholar 

  11. Gardinali PR, Zhao X. Trace determination of caffeine in surface water samples by liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry (LC–APCI–MS). Environ Int. 2002;28(6):521–8.

    Article  CAS  Google Scholar 

  12. Donot F, Cazals G, Gunata Z, Egron D, Malinge J, Strub C, et al. Analysis of neutral lipids from microalgae by HPLC-ELSD and APCI-MS/MS. J Chromatogr B. 2013;942-943:98–106. https://doi.org/10.1016/j.jchromb.2013.10.016.

    Article  CAS  Google Scholar 

  13. Rozenberg R, Ruibal-Mendieta NL, Petitjean G, Cani P, Delacroix DL, Delzenne NM, et al. Phytosterol analysis and characterization in spelt (Triticum aestivum ssp. spelta L.) and wheat (T. aestivum L.) lipids by LC/APCI-MS. J Cereal Sci. 2003;38(2):189–97. https://doi.org/10.1016/S0733-5210(03)00022-5.

    Article  CAS  Google Scholar 

  14. Ulrich EM, Sobus JR, Grulke CM, Richard AM, Newton SR, Strynar MJ, et al. EPA’s non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings. Anal Bioanal Chem. 2019;411(4):853–66.

    Article  CAS  Google Scholar 

  15. Sobus JR, Grossman JN, Chao A, Singh R, Williams AJ, Grulke CM, et al. Using prepared mixtures of ToxCast chemicals to evaluate non-targeted analysis (NTA) method performance. Anal Bioanal Chem. 2019;411(4):835–51.

    Article  CAS  Google Scholar 

  16. McEachran AD, Mansouri K, Grulke C, Schymanski EL, Ruttkies C, Williams AJ. “MS-Ready” structures for non-targeted high-resolution mass spectrometry screening studies. J Cheminform. 2018;10(1):45.

    Article  Google Scholar 

  17. Yang C, Tarkhov A, Marusczyk J, Bienfait B, Gasteiger J, Kleinoeder T, et al. New publicly available chemical query language, CSRML, to support chemotype representations for application to data mining and modeling. J Chem Inf Model. 2015;55(3):510–28.

    Article  CAS  Google Scholar 

  18. Molecular Networks GmbH, Altamira LLC. ChemoTyper - Chemotype Your Molecular Datasets. 2019. https://www.mn-am.com/products/chemotyper. Accessed 9–29-19.

  19. Mansouri K, Grulke CM, Judson RS, Williams AJ. OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminformatics. 2018;10(1):10.

    Article  Google Scholar 

  20. Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminformatics. 2017;9(1):61. https://doi.org/10.1186/s13321-017-0247-6.

    Article  CAS  Google Scholar 

  21. McKight PE, Najab J. Kruskal-Wallis test. In: The corsini encyclopedia of psychology; 2010. p. 1–1.

    Google Scholar 

  22. Dinno A. Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J. 2015;15(1):292–300.

    Article  Google Scholar 

  23. Chusaksri S, Sutthivaiyakit S, Sutthivaiyakit P. Confirmatory determination of organochlorine pesticides in surface waters using LC/APCI/tandem mass spectrometry⋄. Anal Bioanal Chem. 2006;384(5):1236–45. https://doi.org/10.1007/s00216-005-0248-6.

    Article  CAS  PubMed  Google Scholar 

  24. Dougherty RC. Negative chemical ionization mass spectrometry. Anal Chem. 1981;53(4):625–36. https://doi.org/10.1021/ac00227a003.

    Article  Google Scholar 

  25. Haraguchi K, Kato Y, Atobe K, Okada S, Endo T, Matsubara F, et al. Negative APCI-LC/MS/MS method for determination of natural persistent halogenated products in marine biota. Anal Chem. 2008;80(24):9748–55. https://doi.org/10.1021/ac801824f.

    Article  CAS  PubMed  Google Scholar 

  26. Jing R, Fusi S, Chan A, Capozzi S, Kjellerup BV. Distribution of polychlorinated biphenyls in effluent from a large municipal wastewater treatment plant: potential for bioremediation? J Environ Sci. 2019;78:42–52. https://doi.org/10.1016/j.jes.2018.06.007.

    Article  Google Scholar 

  27. Lee S, Song G-J, Kannan K, Moon H-B. Occurrence of PBDEs and other alternative brominated flame retardants in sludge from wastewater treatment plants in Korea. Sci Total Environ. 2014;470:1422–9.

    Article  Google Scholar 

  28. Sánchez-Avila J, Bonet J, Velasco G, Lacorte S. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a municipal wastewater treatment plant. Sci Total Environ. 2009;407(13):4157–67.

    Article  Google Scholar 

  29. Wang Y, Zhang Q, Lv J, Li A, Liu H, Li G, et al. Polybrominated diphenyl ethers and organochlorine pesticides in sewage sludge of wastewater treatment plants in China. Chemosphere. 2007;68(9):1683–91.

    Article  CAS  Google Scholar 

  30. Thurman E, Ferrer I, Barcelo D. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides. Anal Chem. 2001;73(22):5441–9.

    Article  CAS  Google Scholar 

  31. Marvin CH, Smith RW, Bryant DW, McCarry BE. Analysis of high-molecular-mass polycyclic aromatic hydrocarbons in environmental samples using liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A. 1999;863(1):13–24. https://doi.org/10.1016/S0021-9673(99)00955-3.

    Article  CAS  PubMed  Google Scholar 

  32. Titato GM, Lanças FM. Optimization and validation of HPLC-UV-DAD and HPLC-APCI-MS methodologies for the determination of selected PAHs in water samples. J Chromatogr Sci. 2006;44(1):35–40. https://doi.org/10.1093/chromsci/44.1.35.

    Article  CAS  PubMed  Google Scholar 

  33. Mansouri K, Cariello NF, Korotcov A, Tkachenko V, Grulke CM, Sprankle CS, et al. Open-source QSAR models for pKa prediction using multiple machine learning approaches. J Cheminformatics. 2019;11(1):60. https://doi.org/10.1186/s13321-019-0384-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from the Oak Ridge Institute for Science and Education and Luxembourg National Research Fund for project A18/BM/12341006. Special thanks to Chris Grulke and Antony Williams for their support with ENTACT and related data, Daniel Todd for assistance with the LC/MS analysis, and James McCord for scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elin M. Ulrich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Additional information

Published in the topical collection Persistent and Mobile Organic Compounds – An Environmental Challenge with guest editors Torsten C. Schmidt, Thomas P. Knepper, and Thorsten Reemtsma.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 378 kb).

ESM 2

(XLSX 298 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.R., Chao, A., Phillips, K.A. et al. Expanded coverage of non-targeted LC-HRMS using atmospheric pressure chemical ionization: a case study with ENTACT mixtures. Anal Bioanal Chem 412, 4931–4939 (2020). https://doi.org/10.1007/s00216-020-02716-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02716-3

Keywords

Navigation