Skip to main content

Advertisement

Log in

Biomembrane-based organic electronic devices for ligand–receptor binding studies

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present a simple, rapid method for forming supported lipid bilayers on organic electronic devices composed of conducting polymer electrodes using a solvent-assisted lipid bilayer formation method. These supported bilayers present protein recognition elements that are mobile, critical for multivalent binding interactions. Because these polymers are transparent and conducting, we demonstrate, by optical and electrical detection, the specific interactions of proteins with these biomembrane-based bioelectronic devices. This work paves the way for easy formation of biomembrane mimetics for sensing and detection of binding events in a label-free manner on organic electronic devices of more sophisticated architectures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dijkman PM, Watts A. Lipid modulation of early G protein-coupled receptor signalling events. Biochim Biophys Acta Biomembr. 2015;1848(11):2889–97.

    Article  CAS  Google Scholar 

  2. Qi S, Groves JT, Chakraborty AK. Synaptic pattern formation during cellular recognition. Proc Natl Acad Sci U S A. 2001;98(12):6548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang S-T, Kiessling V, Simmons JA, White JM, Tamm LK. HIV gp41–mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat Chem Biol. 2015;11(6):424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jung H, Robison AD, Cremer PS. Multivalent ligand–receptor binding on supported lipid bilayers. J Struct Biol. 2009;168(1):90–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu J, Conboy JC. Structure of a gel phase lipid bilayer prepared by the Langmuir−Blodgett/Langmuir-Schaefer method characterized by sum-frequency vibrational spectroscopy. Langmuir. 2005;21(20):9091–7.

    Article  CAS  PubMed  Google Scholar 

  6. Ferhan AR, Yoon BK, Park S, Sut TN, Chin H, Park JH, et al. Solvent-assisted preparation of supported lipid bilayers. Nat Protoc. 2019;1.

  7. Hohner AO, David MPC, Rädler JO. Controlled solvent-exchange deposition of phospholipid membranes onto solid surfaces. Biointerphases. 2010;5(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  8. Richter RP, Bérat R, Brisson AR. Formation of solid-supported lipid bilayers: an integrated view. Langmuir. 2006;22(8):3497–505.

    Article  CAS  Google Scholar 

  9. Sia SK, Whitesides GM. Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis. 2003;24(21):3563–76.

    Article  CAS  PubMed  Google Scholar 

  10. Albertorio F, Daniel S, Cremer PS. Supported lipopolymer membranes as nanoscale filters: simultaneous protein recognition and size-selection assays. J Am Chem Soc. 2006;128(22):7168–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang T, S-y J, Mao H, Cremer PS. Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Anal Chem. 2001;73(2):165–9.

    Article  CAS  PubMed  Google Scholar 

  12. Shi J, Yang T, Kataoka S, Zhang Y, Diaz AJ, Cremer PS. GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes. J Am Chem Soc. 2007;129(18):5954–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salaita K, Nair PM, Petit RS, Neve RM, Das D, Gray JW, et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science. 2010;327(5971):1380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Toseland CP. Fluorescent labeling and modification of proteins. J Chem Biol. 2013;6(3):85–95.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Campbell CT, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials. 2007;28(15):2380–92.

    Article  CAS  PubMed  Google Scholar 

  16. Cho N-J, Frank CW, Kasemo B, Höök F. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat Protoc. 2010;5(6):1096.

    Article  CAS  PubMed  Google Scholar 

  17. Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem Soc Rev. 1998;27(4):241–50.

    Article  CAS  Google Scholar 

  18. Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol. 2001;19(9):856.

    Article  CAS  PubMed  Google Scholar 

  19. Pappa A-M, Parlak O, Scheiblin G, Mailley P, Salleo A, Owens RM. Organic electronics for point-of-care metabolite monitoring. Trends Biotechnol. 2018;36(1):45–59.

    Article  CAS  PubMed  Google Scholar 

  20. Rivnay J, Inal S, Salleo A, Owens RM, Berggren M, Malliaras GG. Organic electrochemical transistors. Nat Rev. 2018;3(2):17086.

    CAS  Google Scholar 

  21. Pitsalidis C, Pappa A, Moysidou C, Iandolo D, Owens R. Conducting and conjugated polymers for biosensing applications. In: Conjugated polymers: CRC; 2019. p. 697–742.

  22. Liu H-Y, Chen W-L, Ober CK, Daniel S. Biologically complex planar cell plasma membranes supported on polyelectrolyte cushions enhance transmembrane protein mobility and retain native orientation. Langmuir. 2017;34(3):1061–72.

    Article  PubMed  Google Scholar 

  23. Tanaka M, Sackmann E. Polymer-supported membranes as models of the cell surface. Nature. 2005;437(7059):656.

    Article  CAS  PubMed  Google Scholar 

  24. Strakosas X, Bongo M, Owens RM. The organic electrochemical transistor for biological applications. J Appl Polym Sci. 2015;132(15).

  25. Zhang Y, Inal S, Hsia CY, Ferro M, Ferro M, Daniel S, et al. Supported lipid bilayer assembly on PEDOT:PSS films and transistors. Adv Funct Mater. 2016;26(40):7304–13.

    Article  CAS  Google Scholar 

  26. Su H, Liu H-Y, Pappa A-M, Hidalgo TC, Cavassin P, Inal S, et al. Facile generation of biomimetic-supported lipid bilayers on conducting polymer surfaces for membrane biosensing. ACS Appl Mater Interfaces. 2019;11(47):43799–810.

    Article  CAS  PubMed  Google Scholar 

  27. Soumpasis DM. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J. 1983;41(1):95–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tabaei SR, Choi J-H, Haw Zan G, Zhdanov VP, Cho N-J. Solvent-assisted lipid bilayer formation on silicon dioxide and gold. Langmuir. 2014;30(34):10363–73.

    Article  CAS  PubMed  Google Scholar 

  29. Tabaei SR, Jackman JA, Kim S-O, Liedberg B, Knoll W, Parikh AN, et al. Formation of cholesterol-rich supported membranes using solvent-assisted lipid self-assembly. Langmuir. 2014;30(44):13345–52.

    Article  CAS  PubMed  Google Scholar 

  30. Seu KJ, Pandey AP, Haque F, Proctor EA, Ribbe AE, Hovis JS. Effect of surface treatment on diffusion and domain formation in supported lipid bilayers. Biophys J. 2007;92(7):2445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. ElMahmoudy M, Inal S, Charrier A, Uguz I, Malliaras GG, Sanaur S. Tailoring the electrochemical and mechanical properties of PEDOT:PSS films for bioelectronics. Macromol Mater Eng. 2017;302(5):1600497.

    Article  Google Scholar 

  32. Blachon F, Harb F, Munteanu B, Piednoir A, Fulcrand R, Charitat T, et al. Nanoroughness strongly impacts lipid mobility in supported membranes. Langmuir. 2017;33(9):2444–53.

    Article  CAS  PubMed  Google Scholar 

  33. Atanasov V, Knorr N, Duran RS, Ingebrandt S, Offenhäusser A, Knoll W, et al. Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys J. 2005;89(3):1780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poltorak L, Verheijden ML, Bosma D, Jonkheijm P, de Smet LC, Sudhölter EJ. Lipid bilayers cushioned with polyelectrolyte-based films on doped silicon surfaces. Biochim Biophys Acta Biomembr. 2018;1860(12):2669–80.

    Article  CAS  PubMed  Google Scholar 

  35. Sugihara K, Delai M, Szendro I, Guillaume-Gentil O, Vörös J, Zambelli T. Simultaneous OWLS and EIS monitoring of supported lipid bilayers with the pore forming peptide melittin. Sens Actuators B Chem. 2012;161(1):600–6.

    Article  CAS  Google Scholar 

  36. Purrucker O, Hillebrandt H, Adlkofer K, Tanaka M. Deposition of highly resistive lipid bilayer on silicon–silicon dioxide electrode and incorporation of gramicidin studied by ac impedance spectroscopy. Electrochim Acta. 2001;47(5):791–8.

    Article  CAS  Google Scholar 

  37. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors-sensor principles and architectures. Sensors. 2008;8(3):1400–58.

    Article  CAS  PubMed  Google Scholar 

  38. Ertürk G, Mattiasson B. Capacitive biosensors and molecularly imprinted electrodes. Sensors. 2017;17(2):390.

    Article  Google Scholar 

  39. Mattiasson B, Hedström M. Capacitive biosensors for ultra-sensitive assays. TrAC Trends Anal Chem. 2016;79:233–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Nam-Joon Cho (the Engineering in Translational Science Group at Nanyang Technical University) for his advice and providing the microfluidic flow cells used in this work. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of DARPA or the Army Research Office or the U.S. Government.

Funding

A.M.P. received funding from the Oppenheimer Junior Research Fellowship. Part of this work was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2018-CRG7-3709. This research was sponsored in part by the Defense Advanced Research Projects Agency (DARPA) Army Research Office and was accomplished under Cooperative agreement number W911NF-18-2-0152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Daniel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Electronic supplementary material

ESM 1

(PDF 340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HY., Pappa, AM., Hidalgo, T.C. et al. Biomembrane-based organic electronic devices for ligand–receptor binding studies. Anal Bioanal Chem 412, 6265–6273 (2020). https://doi.org/10.1007/s00216-020-02449-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02449-3

Keywords

Navigation