Skip to main content
Log in

Thiol-specific fluorogenic agent for live cell non-protein thiol imaging in lysosomes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Thiol molecules play a significant role in cellular structures and functions. These molecules are distributed in cells unevenly at the subcellular level. Disturbance of cellular thiols has been associated with various diseases and disorders. Probes that are able to detect subcellular thiol density in live cells are valuable tools in determining thiols’ roles at the subcellular level. Lysosomes are a subcellular organelle involved in the degradation of macromolecules through the action of proteolytic enzymes. The degradation not only serves as a way to dispose of unwanted macromolecules but also a way to regulate a variety of cellular functions such as autophagy, endocytosis, and phagocytosis to maintain cell homeostasis. A probe that can detect lysosomal thiols in live cells will be useful in unveiling the roles of thiols in lysosomes. Currently, limited probes are available to detect lysosomal thiols in live cells. We would like to report 4,4′-{[7,7′-thiobis(benzo[c][1,2,5]oxadiazole-4,4′-sulfonyl)]bis(oxy))bis(naphthalene-2,7-disulfonicacid) (TBONES) as a thiol-specific fluorogenic agent for lysosomal thiol imaging in live cells through fluorescence microscopy. TBONES exhibits no fluorescence and readily reacts with non-protein thiols to form fluorescent thiol adducts with λex = 400 nm and λem = 540 nm. No reaction was observed when TBONES was mixed with compounds containing nucleophilic functional groups other than thiols such as –OH, –NH2, and –COOH. No reaction was observed either when TBONES was mixed with protein thiols. When incubated with cells, TBONES selectively and effectively imaged lysosomal thiols in live cells. Imaging of lysosomal thiols was confirmed by a co-localization experiment with LysoTracker™ Blue DND-22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. https://doi.org/10.1146/annurev.cb.05.110189.002411.

    Article  CAS  PubMed  Google Scholar 

  2. Winchester BG. Lysosomal membrane proteins. Eur J Paediatr Neurol. 2001;5(Suppl A):11–9.

    Article  PubMed  Google Scholar 

  3. Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol. 2012;74:69–86. https://doi.org/10.1146/annurev-physiol-012110-142317.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu H, Fan J, Xu Q, Li H, Wang J, Gao P, et al. Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group. Chem Commun (Camb). 2012;48(96):11766–8. https://doi.org/10.1039/c2cc36785h.

    Article  CAS  Google Scholar 

  5. Ferguson SM. Neuronal lysosomes. Neurosci Lett. 2019;697:1–9. https://doi.org/10.1016/j.neulet.2018.04.005.

    Article  CAS  Google Scholar 

  6. Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol. 2009;10(9):623–35. https://doi.org/10.1038/nrm2745.

    Article  CAS  PubMed  Google Scholar 

  7. Ballabio A. The awesome lysosome. EMBO Mol Med. 2016;8(2):73–6. https://doi.org/10.15252/emmm.201505966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Appelqvist H, Waster P, Kagedal K, Ollinger K. The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol. 2013;5(4):214–26. https://doi.org/10.1093/jmcb/mjt022.

    Article  CAS  PubMed  Google Scholar 

  9. Kamat PK, Kyles P, Kalani A, Tyagi N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s disease-like pathology, blood-brain barrier disruption, and synaptic disorder. Mol Neurobiol. 2016;53(4):2451–67. https://doi.org/10.1007/s12035-015-9212-4.

    Article  CAS  PubMed  Google Scholar 

  10. Dielschneider RF, Henson ES, Gibson SB. Lysosomes as oxidative targets for cancer therapy. Oxidative Med Cell Longev. 2017;2017:3749157. https://doi.org/10.1155/2017/3749157.

    Article  CAS  Google Scholar 

  11. Reichmann D, Voth W, Jakob U. Maintaining a healthy proteome during oxidative stress. Mol Cell. 2018;69(2):203–13. https://doi.org/10.1016/j.molcel.2017.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Laer K, Hamilton CJ, Messens J. Low-molecular-weight thiols in thiol-disulfide exchange. Antioxid Redox Signal. 2013;18(13):1642–53. https://doi.org/10.1089/ars.2012.4964.

    Article  CAS  PubMed  Google Scholar 

  13. Estrela JM, Ortega A, Obrador E. Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci. 2006;43(2):143–81. https://doi.org/10.1080/10408360500523878.

    Article  CAS  PubMed  Google Scholar 

  14. Maher P. The effects of stress and aging on glutathione metabolism. Ageing Res Rev. 2005;4(2):288–314. https://doi.org/10.1016/j.arr.2005.02.005.

    Article  CAS  PubMed  Google Scholar 

  15. McMurray J, Chopra M, Abdullah I, Smith WE, Dargie HJ. Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J. 1993;14(11):1493–8.

    Article  CAS  PubMed  Google Scholar 

  16. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6. https://doi.org/10.1186/1475-2891-14-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO, et al. Detection of homocysteine and cysteine. J Am Chem Soc. 2005;127(45):15949–58. https://doi.org/10.1021/ja054962n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McBean GJ, Aslan M, Griffiths HR, Torrao RC. Thiol redox homeostasis in neurodegenerative disease. Redox Biol. 2015;5:186–94. https://doi.org/10.1016/j.redox.2015.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem. 2001;73(24):5972–8.

    Article  CAS  PubMed  Google Scholar 

  20. Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N. 2,4-Dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman's reagent in thiol-quantification enzyme assays. Angew Chem Int Ed Eng. 2005;44(19):2922–5. https://doi.org/10.1002/anie.200500114.

    Article  CAS  Google Scholar 

  21. Wei W, Liang X, Hu G, Guo Y, Shao S. A highly selective colorimetric probe based on 2,2′,2″-trisindolylmethene for cysteine/homocysteine. Tetrahedron Lett. 2011;52(13):4.

    Article  CAS  Google Scholar 

  22. Hurd TR, Prime TA, Harbour ME, Lilley KS, Murphy MP. Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: implications for mitochondrial redox signaling. J Biol Chem. 2007;282(30):22040–51. https://doi.org/10.1074/jbc.M703591200.

    Article  CAS  PubMed  Google Scholar 

  23. Chen W, Zhao Y, Seefeldt T, Guan X. Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J Pharm Biomed Anal. 2008;48(5):1375–80. https://doi.org/10.1016/j.jpba.2008.08.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen SJ, Chang HT. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal Chem. 2004;76(13):3727–34. https://doi.org/10.1021/ac049787s.

    Article  CAS  PubMed  Google Scholar 

  25. Arunachalam B, Phan UT, Geuze HJ, Cresswell P. Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc Natl Acad Sci U S A. 2000;97(2):745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mego JL. Role of thiols, pH and cathepsin D in the lysosomal catabolism of serum albumin. Biochem J. 1984;218(3):775–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hansen JM, Go YM, Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol. 2006;46:215–34. https://doi.org/10.1146/annurev.pharmtox.46.120604.141122.

    Article  CAS  PubMed  Google Scholar 

  28. Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007;18(1):17–25. https://doi.org/10.1016/j.copbio.2007.01.003.

    Article  CAS  PubMed  Google Scholar 

  29. Dai CG, Du XJ, Song QH. Acid-activatable Michael-type fluorescent probes for thiols and for labeling lysosomes in live cells. J Organomet Chem. 2015;80(24):12088–99. https://doi.org/10.1021/acs.joc.5b02041.

    Article  CAS  Google Scholar 

  30. Kand D, Saha T, Lahiri M, Talukdar P. Lysosome targeting fluorescence probe for imaging intracellular thiols. Org Biomol Chem. 2015;13(30):8163–8. https://doi.org/10.1039/c5ob00889a.

    Article  CAS  PubMed  Google Scholar 

  31. Cao M, Chen H, Chen D, Xu Z, Liu SH, Chen X, et al. Naphthalimide-based fluorescent probe for selectively and specifically detecting glutathione in the lysosomes of living cells. Chem Commun (Camb). 2016;52(4):721–4. https://doi.org/10.1039/c5cc08328a.

    Article  CAS  Google Scholar 

  32. Fan J, Han Z, Kang Y, Peng X. A two-photon fluorescent probe for lysosomal thiols in live cells and tissues. Sci Rep. 2016;6:19562. https://doi.org/10.1038/srep19562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang B, Wang B, Ma Q, Xie C, Li X, Wang S. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative. Spectrochim Acta A Mol Biomol Spectrosc. 2018;192:67–74. https://doi.org/10.1016/j.saa.2017.10.044.

    Article  CAS  PubMed  Google Scholar 

  34. Chen C, Zhou L, Liu W, Liu W. Coumarinocoumarin-based two-photon fluorescent cysteine biosensor for targeting lysosome. Anal Chem. 2018;90(10):6138–43. https://doi.org/10.1021/acs.analchem.8b00434.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Liu L, Zhou XL, Wu MY. Lysosome-targeted single fluorescence probe for two-channel imaging intracellular SO(2) and biothiols. Molecules. 2019;24(3):618. https://doi.org/10.3390/molecules24030618.

    Article  CAS  PubMed Central  Google Scholar 

  36. Li Y, Yang Y, Guan X. Benzofurazan sulfides for thiol imaging and quantification in live cells through fluorescence microscopy. Anal Chem. 2012;84(15):6877–83. https://doi.org/10.1021/ac301306s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang S, Yin H, Huang Y, Guan X. Thiol specific and mitochondria selective fluorogenic benzofurazan sulfide for live cell nonprotein thiol imaging and quantification in mitochondria. Anal Chem. 2018;90(13):8170–7. https://doi.org/10.1021/acs.analchem.8b01469.

    Article  CAS  PubMed  Google Scholar 

  38. Yang Y, Guan X. Non-protein thiol imaging and quantification in live cells with a novel benzofurazan sulfide triphenylphosphonium fluorogenic compound. Anal Bioanal Chem. 2017;409(13):3417–27. https://doi.org/10.1007/s00216-017-0285-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang Y, Guan X. Rapid and thiol-specific high-throughput assay for simultaneous relative quantification of total thiols, protein thiols, and nonprotein thiols in cells. Anal Chem. 2015;87(1):649–55. https://doi.org/10.1021/ac503411p.

    Article  CAS  PubMed  Google Scholar 

  40. Niu LY, Zheng HR, Chen YZ, Wu LZ, Tung CH, Yang QZ. Fluorescent sensors for selective detection of thiols: expanding the intramolecular displacement based mechanism to new chromophores. Analyst. 2014;139(6):1389–95. https://doi.org/10.1039/c3an01849k.

    Article  CAS  PubMed  Google Scholar 

  41. Krise JP. Intracellular delivery and disposition of small molecular weight drugs. In: Binghe Wang LH, Teruna J, editors. Siahaan (ed) drug delivery: principles and applications. 2nd ed. New York: John Wiley and Sons; 2016. p. 103–30.

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kyle Schaefer for the help in proofreading the manuscript.

Funding

This work was supported by a grant from the National Institutes of Health (1R15GM107197-01A1) and a scholarship from Saudi Arabian Cultural Mission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangming Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, Y., Wang, S., Najmi, A. et al. Thiol-specific fluorogenic agent for live cell non-protein thiol imaging in lysosomes. Anal Bioanal Chem 411, 6463–6473 (2019). https://doi.org/10.1007/s00216-019-02026-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02026-3

Keywords

Navigation