Skip to main content
Log in

The behavior of a bipedal DNA walker moving on the surface of magnet microparticles and its application in DNA detection

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a three-dimensional DNA machine based on the isothermal strand-displacement polymerase reaction (ISDPR) has been constructed. The walking behavior of a DNA walker on the obstructive surface of magnetic beads has also been studied by adding different nucleic acid blocks. The “leg” of the DNA walker could hybridize with a hairpin structure DNA named H1 and lead to the opening of it. And the newly exposed stem would interact with a primer. A strand exchange has happened with the assistance of polymerase and dNTPs, so that the “leg” has been displaced and the DNA walker could be pushed to move on the surface. But the nucleic acid blocks could increase steric hindrance and obstruct this process, which is similar to the behavior of human beings walking on craggy paths. Through changing these blocks, such as the structure, the amount, and the length of blocks, the movement of the DNA walker has been controlled. What’s more, the results of its application for DNA detection are satisfactory. The limit of detection is 21.6 pM. Also, this method has been successfully applied in complex biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gao M, Guo J, Song Y, Zhu Z, Yang C. Detection of T4 polynucleotide kinase via allosteric aptamer probe platform. ACS Appl Mater Interfaces. 2017;9:38356–63.

    Article  CAS  PubMed  Google Scholar 

  2. Hou T, Wang T, Liu X, Lu T, Liu T, Li F. Amplified detection of T4 polynucleotide kinase activity by the coupled λ exonuclease cleavage reaction and catalytic assembly of bimolecular beacons. Anal Chem. 2014;86:884–90.

    Article  CAS  PubMed  Google Scholar 

  3. Lin L, Liu Y, Zhao X, Li J. Sensitive and rapid screening of T4 polynucleotide kinase activity and inhibition based on coupled exonuclease reaction and graphene oxide platform. Anal Chem. 2011;83:8396–402.

    Article  CAS  PubMed  Google Scholar 

  4. Song C, Zhao M. Real-time monitoring of the activity and kinetics of T4 polynucleotide kinase by a singly labeled DNA-hairpin smart probe coupled with λ exonuclease cleavage. Anal Chem. 2009;81:1383–8.

    Article  CAS  PubMed  Google Scholar 

  5. Zeng G, Zhu Y, Zhang Y, Zhang C, Tang L, Guo P, et al. Electrochemical DNA sensing strategy based on strengthening electronic conduction and a signal amplifier carrier of nanoAu/MCN composited nanomaterials for sensitive lead detection. Environ Sci Nano. 2016;3:1504–9.

    Article  CAS  Google Scholar 

  6. Zhu Y, Zeng G, Zhang Y, Tang L, Chen J, Cheng M, et al. Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb2+-induced G-rich DNA conformation. Analyst. 2014;139:5014–20.

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Zhang Q, Tang B, Zhang C. Single-molecule detection of polynucleotide kinase based on phosphorylation-directed recovery of fluorescence quenched by Au nanoparticles. Anal Chem. 2017;89:7255–61.

    Article  CAS  PubMed  Google Scholar 

  8. Hirata T. Chemically assisted laser ablation ICP mass spectrometry. Anal Chem. 2003;75:228–33.

    Article  CAS  PubMed  Google Scholar 

  9. Liu C, Wang X, Xu J, Chen Y. Chemical strategy to stepwise amplification of signals in surface plasmon resonance imaging detection of saccharides and glycoconjugates. Anal Chem. 2016;88:10011–8.

    Article  CAS  PubMed  Google Scholar 

  10. Luo M, Chen X, Zhou G, Xiang X, Chen L, Ji X, et al. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chem Commun. 2012;48:1126–8.

    Article  CAS  Google Scholar 

  11. Bi S, Ji B, Zhang Z, Zhang S. A chemiluminescence imaging array for the detection of cancer cells by dual-aptamer recognition and bio-bar-code nanoprobe-based rolling circle amplification. Chem Commun. 2013;49:3452–4.

    Article  CAS  Google Scholar 

  12. Lu C, Qi X, Orbach R, Yang H, Harpaz R, Seliktar D, et al. Switchable catalytic acrylamide hydrogels cross-linked by hemin/G-quadruplexes. Nano Lett. 2013;13:1298–302.

    Article  CAS  PubMed  Google Scholar 

  13. Luo M, Li N, Liu Y, Chen C, Xiang X, Ji X, et al. Highly sensitive and multiple DNA biosensor based on isothermal strand-displacement polymerase reaction and functionalized magnetic microparticles. Biosens Bioelectron. 2014;55:318–23.

    Article  CAS  PubMed  Google Scholar 

  14. Zong C, Wu J, Liu M, Yang L, Yan F, Ju H. Chemiluminescence imaging for a protein assay via proximity-dependent DNAzyme formation. Anal Chem. 2014;86:9939–44.

    Article  CAS  PubMed  Google Scholar 

  15. He Y, Huang G, Cui H. Quenching the chemiluminescence of acridinium ester by graphene oxide for label-free and homogeneous DNA detection. ACS Appl Mater Interfaces. 2013;5:11336–40.

    Article  CAS  PubMed  Google Scholar 

  16. Tennico Y, Hutanu D, Koesdjojo M, Bartel C, Remcho V. On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots. Anal Chem. 2010;82:5591–7.

    Article  CAS  PubMed  Google Scholar 

  17. White H, Bard A. Electrogenerated chemiluminescence electrogenerated chemiluminescence and chemiluminescence of the Ru(2,21 - bpy)3 2+-S2O8 2- system in acetonitrile-water solutions. J Am Chem Soc. 1982;104:6891–5.

    Article  CAS  Google Scholar 

  18. Xiao C, Palmer D, Wesolowski D, Lovitz S, King D. Carbon dioxide effects on luminol and 1,10-Phenanthroline chemiluminescence. Anal Chem. 2002;74:2210–6.

    Article  CAS  PubMed  Google Scholar 

  19. Adams N, Bordelon H, Wang K, Albert L, Wright D, Haselton F. Comparison of three magnetic bead surface functionalities for RNA extraction and detection. ACS Appl Mater Interfaces. 2015;7:6062–9.

    Article  CAS  PubMed  Google Scholar 

  20. Thubagere A, Li W, Johnson R, Chen Z, Doroudi S, Lee Y, et al. A cargo-sorting DNA robot. Science. 2017;357:1112.

    Article  CAS  Google Scholar 

  21. Roh Y, Ruiz R, Peng S, Lee J, Luo D. Engineering DNA-based functional materials. Chem Soc Rev. 2011;40:5730–44.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang F, Nangreave J, Liu Y, Yan H. Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc. 2014;136:11198–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watson J, Crick F. Genetical implications of the structure of deoxyribonucleic acid. Nature. 1953;171:737–8.

    Article  CAS  PubMed  Google Scholar 

  24. Sherman W, Seeman N. A precisely controlled DNA biped walking device. Nano Lett. 2004;4:1203–7.

    Article  CAS  Google Scholar 

  25. Shin J, Pierce N. A synthetic DNA walker for molecular transport. J Am Chem Soc. 2004;126:10834–5.

    Article  CAS  PubMed  Google Scholar 

  26. Li N, Zheng J, Li C, Wang X, Ji X, He Z. An enzyme-free DNA walker that moves on the surface of functionalized magnetic microparticles and its biosensing analysis. Chem Commun. 2017;53:8486–8.

    Article  CAS  Google Scholar 

  27. Jung C, Allen P, Ellington A. A stochastic DNA walker that traverses a microparticle surface. Nat Nanotechnol. 2016;11:157–63.

    Article  CAS  PubMed  Google Scholar 

  28. Li W, Wang L, Jiang W. A catalytic assembled enzyme-free three-dimensional DNA walker and its sensing application. Chem Commun. 2017;53:5527–30.

    Article  CAS  Google Scholar 

  29. Wang Z, Elbaz J, Willner I. DNA machines: bipedal walker and stepper. Nano Lett. 2011;11:304–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yin P, Yan H, Daniell X, Turberfield A, Reif J. A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed. 2004;43:4906–11.

    Article  CAS  Google Scholar 

  31. Yurke B, Turberfield A, Mills A, Simmel F, Neumann J. A DNA-fuelled molecular machine made of DNA. Nature. 2000;406:605–8.

    Article  CAS  PubMed  Google Scholar 

  32. He M, Wang K, Wang W, Yu Y, Wang JA. Synthetic DNA walker for molecular transport. Anal Chem. 2017;89:9292–8.

    Article  CAS  PubMed  Google Scholar 

  33. Peng L, Zhang P, Chai Y, Yuan R. Bi-directional DNA walking machine and its application in an enzyme-free electrochemiluminescence biosensor for sensitive detection of microRNAs. Anal Chem. 2017;89:5036–42.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang X, Wang H, Wang H, Zhuo Y, Yuan R, Chai Y. Electrochemiluminescence biosensor based on 3-D DNA nanomachine signal probe powered by protein-aptamer binding complex for ultrasensitive mucin 1 detection. Anal Chem. 2017;89:4280–6.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Zhao Y, Chan W, Wang Y, You Q, Liu C, et al. Selective tracking of lysosomal Cu2+ ions using simultaneous target- and location-activated fluorescent nanoprobes. Anal Chem. 2015;87:584–91.

    Article  CAS  PubMed  Google Scholar 

  36. Tang D, Lin Y, Zhou Q, Lin Y, Li P, Niessner R, et al. Low-cost and highly sensitive immunosensing platform for aflatoxins using one-step competitive displacement reaction mode and portable glucometer-based detection. Anal Chem. 2014;86:11451–8.

    Article  CAS  PubMed  Google Scholar 

  37. Jung C, Allen P, Ellington A. A simple, cleated DNA walker that hangs on to surfaces. ACS Nano. 2017;11:8047–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21675119) and National Major Science and Technology Projects (2018ZX10301405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhike He.

Ethics declarations

Human serum from healthy volunteers was collected from Zhongnan Hospital of Wuhan University with the approval of the Institutional Review Board. Written informed consent was obtained from all participants.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection New Insights into Analytical Science in China with guest editors Lihua Zhang, Hua Cui, and Qiankun Zhuang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Du, M., Tian, S. et al. The behavior of a bipedal DNA walker moving on the surface of magnet microparticles and its application in DNA detection. Anal Bioanal Chem 411, 4055–4061 (2019). https://doi.org/10.1007/s00216-019-01604-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01604-9

Keywords

Navigation