Skip to main content
Log in

Quantitative imaging of 33P in plant materials using 14C polymer references

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Phosphorus (P) research still lacks techniques for rapid imaging of P use and allocation in different soil, sediment, and biological systems in a quantitative manner. In this study, we describe a time-saving and cost-efficient digital autoradiographic method for in situ quantitative imaging of 33P radioisotopes in plant materials. Our method combines autoradiography of the radiotracer applications with additions of commercially available 14C polymer references to obtain 33P activities in a quantitative manner up to 2000 Bq cm−2. Our data show that linear standard regressions for both radioisotopes are obtained, allowing the establishment of photostimulated luminescence equivalence between both radioisotopes with a factor of 9.73. Validating experiments revealed a good agreement between the calculated and applied 33P activity (R2 = 0.96). This finding was also valid for the co-exposure of 14C polymer references and 33P radioisotope specific activities in excised plant leaves for both maize (R2 = 0.99) and wheat (R2 = 0.99). The outlined autoradiographic quantification procedure retrieved 100% ± 12% of the 33P activity in the plant leaves, irrespective of plant tissue density. The simplicity of this methodology opens up new perspectives for fast quantitative imaging of 33P in biological systems and likely, thus, also for other environmental compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McLaughlin M, Alston A, Martin J. Phosphorus cycling in wheat pasture rotations .II. The role of the microbial biomass in phosphorus cycling. Soil Res. 1988;26(2):333–42. https://doi.org/10.1071/SR9880333.

    Article  Google Scholar 

  2. McLaren TI, McLaughlin MJ, McBeath TM, Simpson RJ, Smernik RJ, Guppy CN, et al. The fate of fertiliser P in soil under pasture and uptake by subterraneum clover – a field study using 33P-labelled single superphosphate. Plant Soil. 2016;401(1):23–38. https://doi.org/10.1007/s11104-015-2610-6.

    Article  CAS  Google Scholar 

  3. McLaughlin M, Alston A, Martin J. Phosphorus cycling in wheat pasture rotations .I. The source of phosphorus taken up by wheat. Soil Res. 1988;26(2):323–31. https://doi.org/10.1071/SR9880323.

    Article  Google Scholar 

  4. Johnston RF, Pickett SC, Barker DL. Autoradiography using storage phosphor technology. Electrophoresis. 1990;11(5):355–60. https://doi.org/10.1002/elps.1150110503.

    Article  CAS  PubMed  Google Scholar 

  5. Nakajima E. CRC handbook of chromatography: analysis of lipids, Imaging-plate systems for radioluminographic detection of lipids on thin-layer plates. London: CRC Press; 1993. https://doi.org/10.1002/lipi.19940960509.

    Book  Google Scholar 

  6. Amemiya Y, Miyahara J. Imaging plate illuminates many fields. Nature. 1988;336(6194):89–90. https://doi.org/10.1038/336089a0.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi K, Miyahara J, Shibahara Y. Photostimulated luminescence (PSL) and color centers in BaFX : Eu2 + (X = Cl , Br , I) phosphors. J Electrochem Soc. 1985;132(6):1492–4. https://doi.org/10.1149/1.2114149.

    Article  CAS  Google Scholar 

  8. Shinde KN, Dhoble SJ, Swart HC, Park K. Basic mechanisms of photoluminescence. In: Phosphate phosphors for solid-state lighting. Berlin: Springer; 2012. p. 41–59. https://doi.org/10.1007/978-3-642-34312-4_2.

    Chapter  Google Scholar 

  9. Upham LV, Englert DF. 13 - RADIONUCLIDE IMAGING A2 – L’Annunziata, Michael F. In: Handbook of radioactivity analysis. 2nd ed. San Diego: Academic Press; 2003. p. 1063–127. https://doi.org/10.1016/B978-012436603-9/50018-1.

    Chapter  Google Scholar 

  10. Hüve K, Merbach W, Remus R, Lüttschwager D, Wittenmayer L, Hertel K, et al. Transport of phosphorus in leaf veins of Vicia faba L. J Plant Nutr Soil Sci. 2007;170(1):14–23. https://doi.org/10.1002/jpln.200625057.

    Article  CAS  Google Scholar 

  11. Bauke SL, Landl M, Koch M, Hofmann D, Nagel KA, Siebers N, et al. Macropore effects on phosphorus acquisition by wheat roots – a rhizotron study. Plant Soil. 2017:1–16. https://doi.org/10.1007/s11104-017-3194-0.

  12. Cremer CM, Cremer M, Escobar JL, Speckmann E-J, Zilles K. Fast, quantitative in situ hybridization of rare mRNAs using 14C-standards and phosphorus imaging. J Neurosci Methods. 2009;185(1):56–61. https://doi.org/10.1016/j.jneumeth.2009.09.010.

    Article  CAS  PubMed  Google Scholar 

  13. Eakin TJ, Baskin DG, Breininger JF, Stahl WL. Calibration of 14C-plastic standards for quantitative autoradiography with 33P. J Histochem Cytochem. 1994;42(9):1295–8. https://doi.org/10.1177/42.9.8064137.

    Article  CAS  PubMed  Google Scholar 

  14. Baskin DG, Stahl WL. Fundamentals of quantitative autoradiography by computer densitometry for in situ hybridization, with emphasis on 33P. J Histochem Cytochem. 1993;41(12):1767–76. https://doi.org/10.1177/41.12.8245425.

    Article  CAS  PubMed  Google Scholar 

  15. Robu E, Giovani C. Gamma-ray self-attenuation corrections in environmental samples. Romanian Rep Phys. 2009;61(2):295–300. https://doi.org/10.1016/j.apradiso.2016.04.012.

    Article  CAS  Google Scholar 

  16. Reichert WL, Stein JE, French B, Goodwin P, Varanasi U. Storage phosphor imaging technique for detection and quantitation of DNA adducts measured by the 32P-postlabeling assay. Carcinogenesis. 1992;13(8):1475–9. https://doi.org/10.1093/carcin/13.8.1475.

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi K. Phosphor for X-ray and ionizing radiation. In: Yen WM, Shionoya S, Yamamoto H, editors. Practical applications of phosphors: CRC Press; 2006. p. 319–25.

  18. Takahashi K, Kohda K, Miyahara J, Kanemitsu Y, Amitani K, Shionoya S. Mechanism of photostimulated luminescence in BaFX:Eu2+ (X=Cl,Br) phosphors. J Lumin. 1984;31–32(Part 1):266–8. https://doi.org/10.1016/0022-2313(84)90268-0.

    Article  Google Scholar 

  19. L’Annunziata MF. Chapter 1 - radiation physics and radionuclide decay. In: L’Annunziata MF, editor. Handbook of radioactivity analysis. 3rd ed. Amsterdam: Academic Press; 2012. p. 1–162. https://doi.org/10.1016/B978-0-12-384873-4.00001-3.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the German Federal Ministry of Education and Research (BMBF) for funding the BonaRes project InnoSoilPhos [grant number 031A558]. In addition, this study was also conducted under the scope of the NRW-Strategieprojekt BioSC AlgalFertilizer. We thank P. Narf and we also gratefully thank M. Krause and A. Kubica of the Institute of Bio- and Geosciences – Agrosphere (IBG-3) at Forschungszentrum Jülich GmbH for their practical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Koch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, M., Schiedung, H., Siebers, N. et al. Quantitative imaging of 33P in plant materials using 14C polymer references. Anal Bioanal Chem 411, 1253–1260 (2019). https://doi.org/10.1007/s00216-018-1557-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1557-x

Keywords

Navigation