Skip to main content
Log in

Proton-controlled synthesis of red-emitting carbon dots and application for hematin detection in human erythrocytes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The Red-emitting nitrogen-doped carbon dots (N-CDs) are synthesized using o-phenylenediamine by a one-step method, and can serve as a fluorescent probe for “turn off” detection of hematin in human red cells. The red-emitting N-CDs can be obtained only in acidic conditions and the emission of the red-emitting N-CDs is pH-dependent, indicating proton-controlled synthesis and emission. The red-emitting N-CDs are 2.7 nm in mean size and have a uniform dispersion and exhibit a high quantum yield (12.8%) and great optical properties. The developed sensing system for hematin displays a linear response from 0.4 to 32 μM with a detection limit of 0.18 μM. Importantly, this fluorescent probe demonstrates a good potential practicability for the quantitative detection of hematin in complex matrixes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wei L, Ma Y, Shi X, Wang Y, Su X, Yu C, et al. Living cell intracellular temperature imaging with biocompatible dye-conjugated carbon dots. J Mater Chem B. 2017;5:3383–90.

    Article  CAS  Google Scholar 

  2. Fan YZ, Zhang Y, Li N, Liu SG, Liu T, Li NB, et al. A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sensors Actuators B Chem. 2017;240:949–55.

    Article  CAS  Google Scholar 

  3. Yang ST, Cao L, Luo PG, Lu F, Wang X, Wang HF, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131:11308–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao X, Ding CQ, Zhu AW, Tian Y. Carbon-dot-based ratiometric fluorescent probe for imaging and biosensing of superoxide anion in live cells. Anal Chem. 2014;86:7071–8.

    Article  CAS  PubMed  Google Scholar 

  5. Gong X, Li Z, Hu Q, Zhou R, Shuang S, Dong C. N,S,P co-doped carbon nanodot fabricated from waste microorganism and its application for label-free recognition of manganese (VII) and l-ascorbic acid and AND logic gate operation. ACS Appl Mater Interfaces. 2017;9:38761–72.

    Article  CAS  PubMed  Google Scholar 

  6. Li BL, Setyawati MI, Zou HL, Dong JX, Luo HQ, Li NB, et al. Emerging oD transition-metal dichalcogenides for sensors, biomedicine, and clean energy. Small. 2017;13:1700527.

    Article  CAS  Google Scholar 

  7. Ma Y, Zhang Z, Xu Y, Ma M, Chen B, Wei L, et al. A bright carbon-dot-based fluorescent probe for selective and sensitive detection of mercury ions. Talanta. 2016;161:476–81.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou J, Yang Y, Zhang CY. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun. 2013;49:8605–7.

    Article  CAS  Google Scholar 

  9. Sun S, Zhang L, Jiang K, Wu A, Lin H. Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem Mater. 2016;28:8659–68.

    Article  CAS  Google Scholar 

  10. Miao X, Yan X, Qu D, Li D, Tao FF, Sun Z. Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics. ACS Appl Mater Interfaces. 2017;9:18549–56.

    Article  CAS  Google Scholar 

  11. Light WR, Olson JS. Transmembrane movement of heme. J Biol Chem. 1990;265:15623–31.

    CAS  PubMed  Google Scholar 

  12. Hargrove MS, Whitaker T, Olson JS, Vali RJ, Mathews AJ. Quaternary structure regulates hemin dissociation from human hemoglobin. J Biol Chem. 1997;272:17385–9.

    Article  CAS  PubMed  Google Scholar 

  13. Aich A, Pan W, Vekilov PG. Thermodynamic mechanism of free heme action on sickle cell hemoglobin polymerization. AICHE J. 2015;61:2861–70.

    Article  CAS  Google Scholar 

  14. Levin G, Cogan U, Levy Y, Mokady S. Riboflavin deficiency and the function and fluidity of rat erythrocyte-membranes. J Nutr. 1990;120:857–61.

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein L, Teng ZP, Zeserson E, Patel M, Regan RF. Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. J Neurosci Res. 2003;73:113–21.

    Article  CAS  PubMed  Google Scholar 

  16. Chou AC, Fitch CD. Hemolysis of mouse erythrocytes by ferriprotoporphyrin IX and chloroquine. Chemotherapeutic implications. J Clin Invest. 1980;66:856–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuross SA, Rank BH, Hebbel RP. Excess heme in sickle erythrocyte inside-out membranes: possible role in thiol oxidation. Blood. 1988;71:876–82.

    CAS  PubMed  Google Scholar 

  18. Dutra FF, Alves LS, Rodrigues D, Fernandez PL, Oliveira RB, Golenbock DT, et al. Hemolysis-induced lethality involves inflammasome activation by heme. Proc Natl Acad Sci U S A. 2014;111:E4110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buehler PW, DAgnillo F. Toxicological consequences of extracellular hemoglobin: biochemical and physiological perspectives. Antioxid Redox Signal. 2010;12:275–91.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005;157:175–88.

    Article  CAS  PubMed  Google Scholar 

  21. Huy NT, Dai TXT, Uyen DT, Sasai M, Harada S, Kamei K. An improved colorimetric method for quantitation of heme using tetramethylbenzidine as substrate. Anal Biochem. 2005;344:289–91.

    Article  CAS  PubMed  Google Scholar 

  22. Crouser ED, Gadd ME, Julian MW, Huff JE, Broekemeier KM, Robbins KA, et al. Quantitation of cytochrome c release from rat liver mitochondria. Anal Biochem. 2003;317:67–75.

    Article  CAS  PubMed  Google Scholar 

  23. Luo D, Huang J. Determination of cytochrome c and other heme proteins using the reduction wave of mercury protoporphyrin IX groups generated by a hydroxylamine induced replacement reaction. Anal Chem. 2009;81:2032–6.

    Article  CAS  PubMed  Google Scholar 

  24. Liu SC, Zhai S, Palek J. Detection of hemin release during hemoglobin S denaturation. Blood. 1988;71:1755–8.

    CAS  PubMed  Google Scholar 

  25. Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors Actuators B Chem. 2015;213:434–43.

    Article  CAS  Google Scholar 

  26. Yang Q, Wei L, Zheng X, Xiao L. Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins. Sci Rep. 2015;5:17727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ji L, Chen L, Wu P, Gervasio DF, Cai C. Highly selective fluorescence determination of the hematin level in human erythrocytes with no need for separation from bulk hemoglobin. Anal Chem. 2016;88:3935–44.

    Article  CAS  PubMed  Google Scholar 

  28. Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, et al. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv Mater. 2017;29:1603443.

    Article  CAS  Google Scholar 

  29. Liu J, Li D, Zhang K, Yang M, Sun H, Yang B. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging. Small. 2018:1703919.

  30. Song W, Duan W, Liu Y, Ye Z, Chen Y, Chen H, et al. Ratiometric detection of intracellular lysine and pH with one-pot synthesized dual emissive carbon dots. Anal Chem. 2017;89:13626–33.

    Article  CAS  PubMed  Google Scholar 

  31. Lan M, Zhao S, Zhang Z, Yan L, Guo L, Niu G, et al. Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res. 2017;10:3113–23.

    Article  CAS  Google Scholar 

  32. Sun X, Bruckner C, Lei Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. Nanoscale. 2015;7:17278–82.

    Article  CAS  PubMed  Google Scholar 

  33. Olgun U, Gülfen M. Doping of poly(o-phenylenediamine): spectroscopy, voltammetry, conductivity and band gap energy. React Funct Polym. 2014;77:23–9.

    Article  CAS  Google Scholar 

  34. Lu W, Gong X, Nan M, Liu Y, Shuang S, Dong C. Comparative study for N and S doped carbon dots: synthesis, characterization and applications for Fe3+ probe and cellular imaging. Anal Chim Acta. 2015;898:116–27.

    Article  CAS  PubMed  Google Scholar 

  35. Qu S, Zhou D, Li D, Ji W, Jing P, Han D, et al. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv Mater. 2016;28:3516–21.

    Article  CAS  PubMed  Google Scholar 

  36. Ananthanarayanan A, Wang Y, Routh P, Sk MA, Than A, Lin M, et al. Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale. 2015;7:8159–65.

    Article  CAS  PubMed  Google Scholar 

  37. Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, et al. Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater. 2014;26:3104–12.

    Article  CAS  Google Scholar 

  38. Liu J, Lu S, Tang Q, Zhang K, Yu W, Sun H, et al. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale. 2017;9:7135–42.

    Article  CAS  PubMed  Google Scholar 

  39. Yuan F, Ding L, Li Y, Li X, Fan L, Zhou S, et al. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale. 2015;7:11727–33.

    Article  CAS  PubMed  Google Scholar 

  40. Wu X, Song Y, Yan X, Zhu C, Ma Y, Du D, et al. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens Bioelectron. 2017;94:292–7.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang QQ, Chen BB, Zou HY, Li YF, Huang CZ. Inner filter with carbon quantum dots: a selective sensing platform for detection of hematin in human red cells. Biosens Bioelectron. 2018;100:148–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support from the National Natural Science Foundation of China (No. 21675131) and the Innovation Foundation of Chongqing City for Postgraduate (CYB 16053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Qun Luo or Nian Bing Li.

Ethics declarations

The study was approved by the Ethics Committee of Southwest University, and written informed consent was obtained from all individuals participating in the study prior to the collection of the human blood samples.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, Y.J., Li, N., Liu, S.G. et al. Proton-controlled synthesis of red-emitting carbon dots and application for hematin detection in human erythrocytes. Anal Bioanal Chem 411, 1159–1167 (2019). https://doi.org/10.1007/s00216-018-1547-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1547-z

Keywords

Navigation