Skip to main content
Log in

Direct electrochemical biosensing in gastrointestinal fluids

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Edible electrochemical biosensors with remarkable prolonged resistance to extreme acidic conditions are described for direct glucose sensing in gastrointestinal (GI) fluids of different pH ranges and compositions. Such direct and stable glucose monitoring is realized using carbon-paste biosensors prepared from edible materials, such as olive oil and activated charcoal, shown to protect the activity of the embedded glucose oxidase (GOx) enzyme from strongly acidic conditions. The enzymatic resistance to low-pH deactivation allowed performing direct glucose monitoring in strong acidic environments (pH 1.5) over a 90-min period, while the response of conventional screen-printed (SP) biosensors decreased significantly following 10-min incubation in the same fluid. The developed edible biosensor displayed a linear response between 2 and 10 mM glucose with sensitivity depending on the pH of the corresponding GI fluid. In addition, coating the electrode surface with pH-responsive enteric coatings (Eudragit® L100 and Eudragit® E PO), of different types and densities, allows tuning the sensor activation in gastric and intestinal fluids at specific predetermined times. The attractive characteristics and sensing performance of these edible electrochemical biosensors, along with their pH-responsive actuation, hold considerable promise for the development of ingestible devices towards the biosensing of diverse target analytes after prolonged incubation in challenging body fluids.

Edible biosensors allow direct electrochemical sensing in different gastrointestinal fluids and display remarkable prolonged resistance to extreme acidic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Opportunities and challenges in digestive diseases research: recommendations of the national commission on digestive diseases. Maryland: National Institutes of Health; Washington DC: US Department of Health and Human Services; 2009.

  2. Haghiashtiani G, McAlpine MC. Sensing gastrointestinal motility. Nat Biomed Eng. 2017;1:775–6.

    Article  PubMed  Google Scholar 

  3. Traverso G, Langer R. Perspective: special delivery for the gut. Nature. 2015;519:S19.

    Article  CAS  PubMed  Google Scholar 

  4. Wang J. Electrochemical glucose biosensors. Chem Rev. 2008;108:814–25.

    Article  CAS  PubMed  Google Scholar 

  5. Matzeu G, Florea L, Diamond D. Advances in wearable chemical sensor design for monitoring biological fluids. Sensors Actuators B Chem. 2015;211:403–18.

    Article  CAS  Google Scholar 

  6. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016;529:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L. In vivo analysis with electrochemical sensors and biosensors. Anal Chem. 2017;89:300–13.

    Article  CAS  PubMed  Google Scholar 

  8. Wang B, Li B, Cheng G, Dong S. Acid-stable amperometric soybean peroxidase biosensor based on a self-gelatinizable grafting copolymer of polyvinyl alcohol and 4-vinylpyridine. Electroanalysis. 2001;13:555–8.

    Article  CAS  Google Scholar 

  9. Dong S, Wang B. Electrochemical biosensing in extreme environment. Electroanalysis. 2002;14:7–16.

    Article  CAS  Google Scholar 

  10. Wang J, Musameh M, Mo J-W. Acid stability of carbon paste enzyme electrodes. Anal Chem. 2006;78:7044–7.

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Liu J, Cepra G. Thermal stabilization of enzymes immobilized within carbon paste electrodes. Anal Chem. 1997;69:3124–7.

    Article  CAS  PubMed  Google Scholar 

  12. Valdés-Ramírez G, Li YC, Kim J, Jia W, Bandodkar AJ, Nuñez-Flores R, et al. Microneedle-based self-powered glucose sensor. Electrochem Commun. 2014;47:58–62.

    Article  CAS  Google Scholar 

  13. Mohan AMV, Windmiller JR, Mishra RK, Wang J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens Bioelectron. 2017;91:574–9.

    Article  CAS  PubMed  Google Scholar 

  14. Jeerapan I, Sempionatto JR, You J-M, Wang J. Enzymatic glucose/oxygen biofuel cells: use of oxygen-rich cathodes for operation under severe oxygen-deficit conditions. Biosens Bioelectron. 2018;122:284–9.

    Article  CAS  PubMed  Google Scholar 

  15. Švancara I, Vytřas K, Kalcher K, Walcarius A, Wang J. Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis. 2009;21:7–28.

    Article  CAS  Google Scholar 

  16. Kim J, Kumar R, Bandodkar AJ, Wang J. Advanced materials for printed wearable electrochemical devices: a review. Adv Electron Mater. 2017;3:1600260.

    Article  CAS  Google Scholar 

  17. Kim J, Jeerapan I, Ciui B, Hartel MC, Martin A, Wang J. Edible electrochemistry: food materials based electrochemical sensors. Adv Healthcare Mater. 2017;6:1700770.

    Article  CAS  Google Scholar 

  18. Bettinger CJ. Materials advances for next-generation ingestible electronic medical devices. Trends Biotechnol. 2015;33:575–85.

    Article  CAS  PubMed  Google Scholar 

  19. Kalantar-zadeh K, Ha N, Zhen Ou J, Berean KJ. Ingestible sensors. ACS Sens. 2017;2:468–83.

    Article  CAS  PubMed  Google Scholar 

  20. Tahirbegi IB, Mir M, Samitier J. Real-time monitoring of ischemia inside stomach. Biosens Bioelectron. 2013;40:323–8.

    Article  CAS  PubMed  Google Scholar 

  21. Bandodkar AJ, Jia W, Yardımcı C, Wang X, Ramirez J, Wang J. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem. 2015;87:394–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A, Campbell AS, et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv Sci. 2018:1800880.

  23. Moustafine RI, Bukhovets AV, Sitenkov AY, Kemenova VA, Rombaut P, Van den Mooter G. Eudragit E PO as a complementary material for designing oral drug delivery systems with controlled release properties: comparative evaluation of new interpolyelectrolyte complexes with countercharged Eudragit L100 copolymers. Mol Pharm. 2013;10:2630–41.

    Article  CAS  PubMed  Google Scholar 

  24. Cetin M, Atila A, Kadioglu Y. Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium. AAPS PharmSciTech. 2010;11:1250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ruiz-Valdepeñas Montiel V, Sempionatto JR, Esteban-Fernández de Ávila B, Whitworth A, Campuzano S, Pingarrón JM, et al. Delayed sensor activation based on transient coatings: biofouling protection in complex biofluids. J Am Chem Soc. 2018;140:14050–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Center for Wearable Sensors. J.R.S. acknowledges fellowship from CNPq (216981/2014-0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Berta Esteban Fernández de Ávila or Joseph Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Valdepeñas Montiel, V., Sempionatto, J.R., Campuzano, S. et al. Direct electrochemical biosensing in gastrointestinal fluids. Anal Bioanal Chem 411, 4597–4604 (2019). https://doi.org/10.1007/s00216-018-1528-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1528-2

Keywords

Navigation