Skip to main content
Log in

Tunable superamphiphobic surfaces: a platform for naked-eye ATP detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A superamphiphobic surface composed of two different size ranges of TiO2 nanoparticles was simply fabricated through spraying the perfluorosilane coated TiO2 nanoparticles suspension dispersing in ethanol. The surface chemistry was finely regulated through gradient UV irradiation-induced organic compound degradation to fabricate surface with gradient solid surface energy or wettability. The fabricated surface shows good droplet sorting ability, which can successfully discriminate ethanol droplets with different concentrations. As a proof-of-concept, the biosensor application of this surface was demonstrated by using it for naked-eye ATP detection. Liquid droplets with different concentrations of ATP after ATP-dependent rolling circle amplification (RCA) can be effectively sorted by the surface. This developed biosensor methodology based on droplet sorting ability of the fabricated surface is energy-efficient and economical which is promising for biosensors, point-of-care testing, and biochemical assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bhushan B, Jung YC, Koch K. Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir. 2009;25(5):3240–8. https://doi.org/10.1021/la803860d.

    Article  CAS  PubMed  Google Scholar 

  2. Blossey R. Self-cleaning surfaces - virtual realities. Nat Mater. 2003;2(5):301–6. https://doi.org/10.1038/nmat856.

    Article  CAS  PubMed  Google Scholar 

  3. Furstner R, Barthlott W, Neinhuis C, Walzel P. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir. 2005;21(3):956–61. https://doi.org/10.1021/la0401011.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang PC, Lin L, Zang DM, Guo XL, Liu MJ. Designing bioinspired anti-biofouling surfaces based on a superwettability strategy. Small. 2017;13(4). https://doi.org/10.1002/Smll.201503334.

  5. Guo P, Zheng YM, Wen MX, Song C, Lin YC, Jiang L. Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv Mater. 2012;24(19):2642–8. https://doi.org/10.1002/adma.201104412.

    Article  CAS  PubMed  Google Scholar 

  6. Cao LL, Jones AK, Sikka VK, Wu JZ, Gao D. Anti-icing superhydrophobic coatings. Langmuir. 2009;25(21):12444–8. https://doi.org/10.1021/la902882b.

    Article  CAS  PubMed  Google Scholar 

  7. Emelyanenko AM, Boinovich LB, Bezdomnikov AA, Chulkova EV, Emelyanenko KA. Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions. ACS Appl Mater Interfaces. 2017;9(28):24210–9. https://doi.org/10.1021/acsami.7b05549.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang XY, Li Z, Liu KS, Jiang L. Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater. 2013;23(22):2881–6. https://doi.org/10.1002/adfm.201202662.

    Article  CAS  Google Scholar 

  9. Ma QL, Cheng HF, Fane AG, Wang R, Zhang H. Recent development of advanced materials with special wettability for selective oil/water separation. Small. 2016;12(16):2186–202. https://doi.org/10.1002/smll.201503685.

    Article  CAS  PubMed  Google Scholar 

  10. Crick CR, Parkin IP. Water droplet bouncing-a definition for superhydrophobic surfaces. Chem Commun. 2011;47(44):12059–61. https://doi.org/10.1039/c1cc14749h.

    Article  CAS  Google Scholar 

  11. Schutzius TM, Jung S, Maitra T, Graeber G, Kohme M, Poulikakos D. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature. 2015;527(7576):82–5. https://doi.org/10.1038/nature15738.

    Article  CAS  PubMed  Google Scholar 

  12. Draper MC, Crick CR, Orlickaite V, Turek VA, Parkin IP, Edel JB. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control. Anal Chem. 2013;85(11):5405–10. https://doi.org/10.1021/ac303786s.

    Article  CAS  PubMed  Google Scholar 

  13. Yang XL, Liu X, Lu Y, Song JL, Huang S, Zhou SN, et al. Controllable water adhesion and anisotropic sliding on patterned superhydrophobic surface for droplet manipulation. J Phys Chem C. 2016;120(13):7233–40. https://doi.org/10.1021/acs.jpcc.6b02067.

    Article  CAS  Google Scholar 

  14. Movafaghi S, Wang W, Metzger A, Williams DD, Williams JD, Kota AK. Tunable superomniphobic surfaces for sorting droplets by surface tension. Lab Chip. 2016;16(17):3204–9. https://doi.org/10.1039/c6lc00673f.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng W, Jiang X. Integration of nanomaterials for colorimetric immunoassays with improved performance: a functional perspective. Analyst. 2016;141(4):1196–208. https://doi.org/10.1039/c5an02222c.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou W, Gao X, Liu D, Chen X. Gold nanoparticles for in vitro diagnostics. Chem Rev. 2015;115(19):10575–636. https://doi.org/10.1021/acs.chemrev.5b00100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Howes PD, Rana S, Stevens MM. Plasmonic nanomaterials for biodiagnostics. Chem Soc Rev. 2014;43(11):3835–53. https://doi.org/10.1039/c3cs60346f.

    Article  CAS  PubMed  Google Scholar 

  18. Tang L, Li J. Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sens. 2017;2(7):857–75. https://doi.org/10.1021/acs.sensors.7b00282.

    Article  CAS  PubMed  Google Scholar 

  19. Tian DL, Song YL, Jiang L. Patterning of controllable surface wettability for printing techniques. Chem Soc Rev. 2013;42(12):5184–209. https://doi.org/10.1039/c3cs35501b.

    Article  CAS  PubMed  Google Scholar 

  20. Cavallini M, Gentili D, Greco P, Valle F, Biscarini F. Micro- and nanopatterning by lithographically controlled wetting. Nat Protoc. 2012;7(9):1668–76. https://doi.org/10.1038/nprot.2012.094.

    Article  CAS  PubMed  Google Scholar 

  21. Lee H, Lee SG, Doyle PS. Photopatterned oil-reservoir micromodels with tailored wetting properties. Lab Chip. 2015;15(14):3047–55. https://doi.org/10.1039/c5lc00277j.

    Article  CAS  PubMed  Google Scholar 

  22. Lee KJ, Pan F, Carroll GT, Turro NJ, Koberstein JT. Photolithographic technique for direct photochemical modification and chemical micropatterning of surfaces. Langmuir. 2004;20(5):1812–8. https://doi.org/10.1021/la0358163.

    Article  CAS  Google Scholar 

  23. Lafuma A, Quere D. Superhydrophobic states. Nat Mater. 2003;2(7):457–60. https://doi.org/10.1038/nmat924.

    Article  CAS  PubMed  Google Scholar 

  24. Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP. Robust self-cleaning surfaces that function when exposed to either air or oil. Science. 2015;347(6226):1132–5. https://doi.org/10.1126/science.aaa0946.

    Article  CAS  PubMed  Google Scholar 

  25. Yu JC, Yu JG, Ho WK, Zhang LZ. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem Commun. 2001;(19):1942–3. https://doi.org/10.1039/b105471f.

  26. Zhang H, Lv XJ, Li YM, Wang Y, Li JH. P25-graphene composite as a high performance photocatalyst. ACS Nano. 2010;4(1):380–6. https://doi.org/10.1021/nn901221k.

    Article  CAS  PubMed  Google Scholar 

  27. Sassanfar M, Szostak JW. An RNA motif that binds ATP. Nature. 1993;364(6437):550–3. https://doi.org/10.1038/364550a0.

    Article  CAS  PubMed  Google Scholar 

  28. Hui CY, Liu M, Li YF, Brennan JD. A paper sensor printed with multifunctional bio/nano materials. Angew Chem Int Ed. 2018;57(17):4549–53. https://doi.org/10.1002/ange.201712903.

    Article  CAS  Google Scholar 

  29. Ali MM, Li F, Zhang ZQ, Zhang KX, Kang DK, Ankrum JA, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev. 2014;43(10):3324–41. https://doi.org/10.1039/c3cs60439j.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Basic Research Program of China (973 Program, 2015CB932600), the National Key R&D Program of China (2017YFA0208000, 2016YFF0100800), the National Natural Science Foundation of China (21525523, 21722507, 21574048, 21874121), The Fok Ying-Tong Education Foundation, China (151011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Electronic supplementary material

ESM 1

(PDF 317 kb)

ESM 3

(MP4 12380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Chen, Y., Wang, Y. et al. Tunable superamphiphobic surfaces: a platform for naked-eye ATP detection. Anal Bioanal Chem 411, 4721–4727 (2019). https://doi.org/10.1007/s00216-018-1443-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1443-6

Keywords

Navigation