Skip to main content

Advertisement

Log in

Profiling of nanoparticle–protein interactions by electrophoresis techniques

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of nanomaterials in the chemical, biomedical, and biotechnological sciences is growing, increasing the possible release of these materials into the environment and contact with living organisms. Because of their large surface area, biomolecules can be adsorbed on the surface of nanomaterials. Proteins bind to the surface of nanoparticles (NPs), forming a biological layer around the NP, the “protein corona,” which gives new characteristics to the NPs in biological milieu and may affect biomedical applications or induce nanotoxicological effects. Therefore, the development of analytical tools for identification of NP protein corona behavior is essential. Techniques such as spectroscopy, chromatography, calorimetry, and electrophoresis have been used to investigate the interaction of NPs with proteins. This review describes recent developments in the application of electrophoresis techniques for profiling of NP–protein interactions. Further, we provide an overview of directions and challenges in the application of electrophoresis methods for the investigation of NP–protein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C3:

Complement component 3

CD:

Circular dichroism

CE:

Capillary electrophoresis

DIGE:

Difference gel electrophoresis

ICP:

Inductively coupled plasma

ITC:

Isothermal titration calorimetry

LC:

Liquid chromatography

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NMR:

Nuclear magnetic resonance

NP:

Nanoparticle

PDADMAC:

Poly(diallyldimethylammonium chloride)

PAGE:

Polyacrylamide gel electrophoresis

PSS:

Poly(sodium 4-styrenesulfonate)

SDS:

Sodium dodecyl sulfate

SILAC:

Stable isotope labeling by amino acids in cell culture

SPIO:

Superparamagnetic iron oxide

SPR:

Surface plasmon resonance

References

  1. Zamborini FP, Bao L, Dasari R. Nanoparticles in measurement science. Anal Chem. 2011;84(2):541–76.

    Google Scholar 

  2. Zarei M, Zarei M, Ghasemabadi M. Nanoparticle improved separations: from capillary to slab gel electrophoresis. Trends Anal Chem. 2016;86:56–74.

    Google Scholar 

  3. Zarei M, Zarei M. Self-Propelled micro/nanomotors for sensing and environmental remediation. Small. 2018;14(30):1800912.

    Google Scholar 

  4. Aitken R, Chaudhry M, Boxall A, Hull M. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med C. 2006;56(5):300–6.

    CAS  Google Scholar 

  5. Darr JA, Zhang J, Makwana NM, Weng X. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev. 2017;117(17):11125–38.

    CAS  PubMed  Google Scholar 

  6. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1):83–96.

    CAS  PubMed  Google Scholar 

  7. Zarei M. Portable biosensing devices for point-of-care diagnostics: recent developments and applications. Trends Anal Chem. 2017;91:26–41.

    CAS  Google Scholar 

  8. Zarei M. Advances in point-of-care technologies for molecular diagnostics. Biosens Bioelectron. 2017;98:494–506.

    CAS  PubMed  Google Scholar 

  9. Zarei M. Infectious pathogens meet point-of-care diagnostics. Biosens Bioelectron. 2018;106:193–203.

    CAS  PubMed  Google Scholar 

  10. Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y, et al. The light‐induced field‐effect solar cell concept–perovskite nanoparticle coating introduces polarization enhancing silicon cell efficiency. Adv. Mater. 2017;29(18):1606370.

    Google Scholar 

  11. Son D-Y, Im J-H, Kim H-S, Park N-G. 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J. Phys. Chem. C. 2014;118(30):16567–73.

    CAS  Google Scholar 

  12. Choudhury S, Mangal R, Agrawal A, Archer LA. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat Commun. 2015;6:10101.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin L, Pan Q. ZnFe2O4@ C/graphene nanocomposites as excellent anode materials for lithium batteries. J Mater Chem A. 2015;3(4):1724–9.

    CAS  Google Scholar 

  14. Singh D, Timofeeva EV, Moravek MR, Cingarapu S, Yu W, Fischer T, et al. Use of metallic nanoparticles to improve the thermophysical properties of organic heat transfer fluids used in concentrated solar power. Sol. Energy. 2014;105:468–78.

    CAS  Google Scholar 

  15. Minkowycz W, Sparrow EM, Abraham JP, editors. Nanoparticle heat transfer and fluid flow. Boca Raton: CRC Press; 2016.

    Google Scholar 

  16. Zhang H, Nikolov A, Wasan D. Enhanced oil recovery (EOR) using nanoparticle dispersions: underlying mechanism and imbibition experiments. Energy Fuels. 2014;28(5):3002–9.

    CAS  Google Scholar 

  17. Chen C, Wang S, Kadhum MJ, Harwell JH, Shiau B-J. Using carbonaceous nanoparticles as surfactant carrier in enhanced oil recovery: a laboratory study. Fuel. 2018;222:561–8.

    CAS  Google Scholar 

  18. Sofla SJD, James LA, Zhang Y. Insight into the stability of hydrophilic silica nanoparticles in seawater for enhanced oil recovery implications. Fuel. 2018;216:559–71.

    Google Scholar 

  19. Rognmo A, Heldal S, Fernø M. Silica nanoparticles to stabilize CO2-foam for improved CO2 utilization: enhanced CO2 storage and oil recovery from mature oil reservoirs. Fuel. 2018;216:621–6.

    CAS  Google Scholar 

  20. Aalaie J. Rheological behavior of polyacrylamide/laponite nanoparticle suspensions in electrolyte media. J Macromol Sci B. 2012;51(6):1139–47.

    CAS  Google Scholar 

  21. Aalaie J, Vasheghani-Farahani E, Rahmatpour A, Semsarzadeh MA. Effect of montmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. Eur Polym J. 2008;44(7):2024–31.

    CAS  Google Scholar 

  22. Li C-C, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, et al. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology. 2017;11(5):699–709.

    CAS  PubMed  Google Scholar 

  23. Clar JG, Platten WE, Baumann EJ, Remsen A, Harmon SM, Bennett-Stamper CL, et al. Dermal transfer and environmental release of CeO2 nanoparticles used as UV inhibitors on outdoor surfaces: Implications for human and environmental health. Sci Total Environ. 2018;613:714–23.

    PubMed  Google Scholar 

  24. Jayaram DT, Runa S, Kemp ML, Payne CK. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells. Nanoscale. 2017;9:7595.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Klein J. Probing the interactions of proteins and nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2029–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2050–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Treuel L, Malissek M, Gebauer JS, Zellner R. The influence of surface composition of nanoparticles on their interactions with serum albumin. Chem Phys Chem. 2010;11(14):3093–9.

    CAS  PubMed  Google Scholar 

  28. Roach P, Farrar D, Perry CC. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc. 2006;128(12):3939–45.

    CAS  PubMed  Google Scholar 

  29. Rodriguez CE, Fukuto JM, Taguchi K, Froines J, Cho AK. The interactions of 9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions. Chem Biol Interact. 2005;155(1):97–110.

    CAS  PubMed  Google Scholar 

  30. Brandes N, Welzel PB, Werner C, Kroh LW. Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. J Colloid Interface Sci. 2006;299(1):56–69.

    CAS  PubMed  Google Scholar 

  31. Hadjidemetriou M, Kostarelos K. Nanomedicine: evolution of the nanoparticle corona. Nat Nanotechnol. 2017;12(4):288–90.

    CAS  PubMed  Google Scholar 

  32. Greenfield NJ. Applications of circular dichroism in protein and peptide analysis. Trends Anal Chem. 1999;18(4):236–44.

    CAS  Google Scholar 

  33. Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochem Biophys Acta. 2005;1751(2):119–39.

    CAS  PubMed  Google Scholar 

  34. Shang L, Wang Y, Jiang J, Dong S. pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir. 2007;23(5):2714–21.

    CAS  PubMed  Google Scholar 

  35. Wang T, Bai J, Jiang X, Nienhaus GU. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano. 2012;6(2):1251–9.

    CAS  PubMed  Google Scholar 

  36. Zhang J, Yan Y-B. Probing conformational changes of proteins by quantitative second-derivative infrared spectroscopy. Anal Biochem. 2005;340(1):89–98.

    CAS  PubMed  Google Scholar 

  37. Shao M, Lu L, Wang H, Luo S, Ma DDD. Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering. Microchim Acta. 2009;164(1–2):157–60.

    CAS  Google Scholar 

  38. Mátyus L, Szöllősi J, Jenei A. Steady-state fluorescence quenching applications for studying protein structure and dynamics. J.Photochem Photobiol B. 2006;83(3):223–36.

    PubMed  Google Scholar 

  39. Royer CA. Probing protein folding and conformational transitions with fluorescence. Chem Rev. 2006;106(5):1769–84.

    CAS  PubMed  Google Scholar 

  40. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G. Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci. 2010;99(5):2200–8.

    CAS  PubMed  Google Scholar 

  41. Printz M, Friess W. Simultaneous detection and analysis of protein aggregation and protein unfolding by size exclusion chromatography with post column addition of the fluorescent dye BisANS. J Pharm Sci. 2012;101(2):826–37.

    CAS  PubMed  Google Scholar 

  42. Vogt A, D'Angelo C, Oswald F, Denzel A, Mazel CH, Matz MV, et al. A green fluorescent protein with photoswitchable emission from the deep sea. PLoS One. 2008;3(11):e3766.

    PubMed  PubMed Central  Google Scholar 

  43. Wiedenmann J, Ivanchenko S, Oswald F, Nienhaus GU. Identification of GFP-like proteins in nonbioluminescent, azooxanthellate anthozoa opens new perspectives for bioprospecting. Mar Biotechnol. 2004;6(3):270–7.

    CAS  PubMed  Google Scholar 

  44. Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PH, et al. BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci. 2011;11(5):628–38.

    CAS  PubMed  Google Scholar 

  45. Hu X, Ke Y, Zhao Y, Lu S, Yu C, Peng F. Synthesis and characterization of a β-cyclodextrin modified polyacrylamide and its rheological properties by hybriding with silica nanoparticles. Colloids Surf A. 2018;548:10–8.

    CAS  Google Scholar 

  46. Józefczak A, Hornowski T, Rozynek Z, Skumiel A, Fossum JO. Rheological study of dextran-modified magnetite nanoparticle water suspension. Int J Thermophys. 2013;34(4):609–19.

    Google Scholar 

  47. Cheng Y, Wang M, Borghs G, Chen H. Gold nanoparticle dimers for plasmon sensing. Langmuir. 2011;27(12):7884–91.

    CAS  PubMed  Google Scholar 

  48. Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7(12):779–86.

    CAS  PubMed  Google Scholar 

  49. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8(10):772–81.

    CAS  PubMed  Google Scholar 

  50. Albanese A, Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano. 2014;8(6):5515–26.

    CAS  PubMed  Google Scholar 

  51. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010;132(16):5761–8.

    CAS  PubMed  Google Scholar 

  52. Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, et al. Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir. 2012;2(25):9673–9.

    Google Scholar 

  53. Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012;134(4):2139–47.

    CAS  PubMed  Google Scholar 

  54. Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–99.

    CAS  PubMed  Google Scholar 

  55. Dobrovolskaia MA, Neun BW, Man S, Ye X, Hansen M, Patri AK, et al. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomed Nanotechnol. 2014;10(7):1453–63.

    CAS  Google Scholar 

  56. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009;8(7):543–57.

    CAS  PubMed  Google Scholar 

  57. Bodelón G, Costas C, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM. Gold nanoparticles for regulation of cell function and behavior. Nano Today. 2017;13(Suppl C):40–60.

    Google Scholar 

  58. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–2134.

  59. Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I, Lindman S, Thulin E, et al. Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci U S A. 2007;104(21):8691–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Stradner A, Sedgwick H, Cardinaux F, Poon WC, Egelhaaf SU, Schurtenberger P. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature. 2004;432(7016):492.

    CAS  PubMed  Google Scholar 

  61. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–66.

    CAS  PubMed  Google Scholar 

  62. Li N, Zeng S, He L, Zhong W. Probing nanoparticle−protein interaction by capillary electrophoresis. Anal Chem. 2010;82(17):7460–6.

    CAS  PubMed  Google Scholar 

  63. Patra A, Ding T, Engudar G, Wang Y, Dykas MM, Liedberg B, et al. Component‐specific analysis of plasma protein corona formation on gold nanoparticles using multiplexed surface plasmon resonance. Small. 2016;12(9):1174–82.

    CAS  PubMed  Google Scholar 

  64. Carrillo-Carrion C, Carril M, Parak WJ. Techniques for the experimental investigation of the protein corona. Curr Opin Biotechnol. 2017;46:106–13.

    CAS  PubMed  Google Scholar 

  65. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 2007;7(4):914–20.

    CAS  PubMed  Google Scholar 

  66. Shen X-C, Liou X-Y, Ye L-P, Liang H, Wang Z-Y. Spectroscopic studies on the interaction between human hemoglobin and CdS quantum dots. J Colloid Interface Sci. 2007;311(2):400–6.

    CAS  PubMed  Google Scholar 

  67. Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed. 2007;46(30):5754–6.

    CAS  Google Scholar 

  68. Norde W, Giacomelli CE. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J Biotechnol. 2000;79(3):259–68.

    CAS  PubMed  Google Scholar 

  69. Zarei M. Application of nanocomposite polymer hydrogels for ultra-sensitive fluorescence detection of proteins in gel electrophoresis. Trends Anal Chem. 2017;93:7–22.

    CAS  Google Scholar 

  70. Zhang H, Wu R. Proteomic profiling of protein corona formed on the surface of nanomaterial. Sci China Chem. 2015;58(5):780–92.

    CAS  Google Scholar 

  71. Cai X, Ramalingam R, San Wong H, Cheng J, Ajuh P, Cheng SH, et al. Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomed Nanotechnol. 2013;9(5):583–93.

    CAS  Google Scholar 

  72. Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol. 2009;4(9):577–80.

    PubMed  Google Scholar 

  73. Laera S, Ceccone G, Rossi F, Gilliland D, Hussain R, Siligardi G, et al. Measuring protein structure and stability of protein–nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett. 2011;11(10):4480–4.

    CAS  PubMed  Google Scholar 

  74. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, et al. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature. 2009;458(7234):106.

    CAS  PubMed  Google Scholar 

  75. Abdelhamid HN, Wu H-F. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Anal Chem. 2015;65:30–46.

    CAS  Google Scholar 

  76. Huang HL, Stasyk T, Morandell S, Dieplinger H, Falkensammer G, Griesmacher A, et al. Biomarker discovery in breast cancer serum using 2‐D differential gel electrophoresis/MALDI‐TOF/TOF and data validation by routine clinical assays. Electrophoresis. 2006;27(8):1641–50.

    CAS  PubMed  Google Scholar 

  77. Katz A, Waridel P, Shevchenko A, Pick U. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol Cell Proteomics. 2007;6(9):1459–72.

    CAS  PubMed  Google Scholar 

  78. Yu KH, Rustgi AK, Blair IA. Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry. J Proteome Res. 2005;4(5):1742–51.

    CAS  PubMed  Google Scholar 

  79. Højlund K, Yi Z, Hwang H, Bowen B, Lefort N, Flynn CR, et al. Characterization of the human skeletal muscle proteome by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. Mol Cell Proteomics. 2008;7(2):257–67.

    PubMed  Google Scholar 

  80. Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA. Rädler J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano. 2012;6(3):2532–41.

    CAS  PubMed  Google Scholar 

  81. Stalmach A, Albalat A, Mullen W, Mischak H. Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications. Electrophoresis. 2013;34(11):1452–64.

    CAS  PubMed  Google Scholar 

  82. García-Campaña AM, Lara FJ, Gámiz-Gracia L, Huertas-Pérez JF. Chemiluminescence detection coupled to capillary electrophoresis. Trends Anal Chem. 2009;28(8):973–86.

    Google Scholar 

  83. Kim HR, Andrieux K, Delomenie C, Chacun H, Appel M, Desmaële D, et al. Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2‐DE, CE and Protein Lab‐on‐chip® system. Electrophoresis. 2007;28(13):2252–61.

    CAS  PubMed  Google Scholar 

  84. Matczuk M, Anecka K, Scaletti F, Messori L, Keppler BK, Timerbaev AR, et al. Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS: a case study of gold nanoparticles. Metallomics. 2015;7(9):1364–70.

    CAS  PubMed  Google Scholar 

  85. Ramírez-García G, d’Orlyé F, Gutiérrez-Granados S, Martínez-Alfaro M, Mignet N, Richard C, et al. Electrokinetic Hummel-Dreyer characterization of nanoparticle-plasma protein corona: The non-specific interactions between PEG-modified persistent luminescence nanoparticles and albumin. Colloids Surf B. 2017;159:437–44.

    Google Scholar 

  86. Legat J, Matczuk M, Timerbaev AR, Jarosz M. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol. Anal Bioanal Chem. 2017;410(3):1151–6.

    PubMed  PubMed Central  Google Scholar 

  87. Riley KR, Sims CM, Wood IT, Vanderah DJ, Walker ML. Short-chained oligo (ethylene oxide)-functionalized gold nanoparticles: realization of significant protein resistance. Anal Bioanal Chem. 2017;410(1):145–54.

    PubMed  Google Scholar 

  88. Wang J, Li J, Li J, Qin Y, Wang C, Qiu L, et al. In-capillary self-assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis. Electrophoresis. 2015;36(14):1523–8.

    CAS  PubMed  Google Scholar 

  89. Stutz H. Protein attachment onto silica surfaces–a survey of molecular fundamentals, resulting effects and novel preventive strategies in CE. Electrophoresis. 2009;30(12):2032–61.

    CAS  PubMed  Google Scholar 

  90. Hajba L, Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins. Trends Anal Chem. 2017;90:38–44.

    CAS  Google Scholar 

  91. Yeung KK-C, Atwal KK, Zhang H. Dynamic capillary coatings with zwitterionic surfactants for capillary isoelectric focusing. Analyst. 2003;128(6):566–70.

    CAS  PubMed  Google Scholar 

  92. Nehmé R, Perrin C, Cottet H, Blanchin M-D, Fabre H. Stability of capillaries coated with highly charged polyelectrolyte monolayers and multilayers under various analytical conditions—application to protein analysis. J Chromatogr A. 2011;1218(22):3537–44.

    PubMed  Google Scholar 

  93. Zhao L, Zhou J, Xie H, Huang D, Zhou P. Quaternized celluloses as new dynamic coatings in capillary electrophoresis for basic protein separation. Electrophoresis. 2012;33(12):1703–8.

    CAS  PubMed  Google Scholar 

  94. Landers JP. Handbook of capillary electrophoresis. Boca Raton: CRC Press; 1996.

    Google Scholar 

  95. Boselli L, Polo E, Castagnola V, Dawson KA. Regimes of biomolecular ultrasmall nanoparticle interactions. Angew Chem Int Ed. 2017;56(15):4215–8.

    CAS  Google Scholar 

  96. Dalzon B, Aude-Garcia C, Collin-Faure V, Diemer H, Béal D, Dussert F, et al. Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles. Nanoscale. 2017;9(27):9641–58.

    CAS  PubMed  Google Scholar 

  97. Gao J, Lin L, Wei A, Sepúlveda MS. Protein corona analysis of silver nanoparticles exposed to fish plasma. Environ Sci Technol Lett. 2017;4(5):174–9.

    CAS  Google Scholar 

  98. Caputo D, Papi M, Coppola R, Palchetti S, Digiacomo L, Caracciolo G, et al. A protein corona-enabled blood test for early cancer detection. Nanoscale. 2017;9(1):349–54.

    CAS  PubMed  Google Scholar 

  99. Juling S, Niedzwiecka A. Böhmert L, Lichtenstein D, Selve S, Braeuning A, Thünemann AF, Krause E, Lampen A. Protein corona analysis of silver nanoparticles links to their cellular effects. J Proteome Res. 2017;16(11):4020–34.

    CAS  PubMed  Google Scholar 

  100. Raesch SS, Tenzer S, Storck W, Rurainski A, Selzer D, Ruge CA, et al. Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid vomposition. ACS Nano. 2015;9(12):11872–85.

    CAS  PubMed  Google Scholar 

  101. Welsher K, McManus SA, Hsia C-H, Yin S, Yang H. Discovery of protein- and DNA-imperceptible nanoparticle hard coating using gel-based reaction tuning. J Am Chem Soc. 2015;137(2):580–3.

    CAS  PubMed  Google Scholar 

  102. Johnston BD, Kreyling WG, Pfeiffer C, Schäffler M, Sarioglu H, Ristig S, et al. Colloidal stability and surface chemistry are key factors for the composition of the protein corona of inorganic gold nanoparticles. Adv Funct Mater. 2017;27(42):1701956.

    Google Scholar 

  103. Chen F, Wang G, Griffin JI, Brenneman B, Banda NK, Holers VM, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat Nanotechnol. 2017;12(4):387–93.

    CAS  PubMed  Google Scholar 

  104. Sund J, Palomäki J, Ahonen N, Savolainen K, Alenius H, Puustinen A. Phagocytosis of nano-sized titanium dioxide triggers changes in protein acetylation. J Proteomics. 2014;108(Suppl C):469–83.

    CAS  PubMed  Google Scholar 

  105. Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer S, Stauber R. The nanoparticle biomolecule corona: lessons learned–challenge accepted? Chem Soc Rev. 2015;44(17):6094–121.

    CAS  PubMed  Google Scholar 

  106. Schmitt-Kopplin P, editor. Capillary electrophoresis. New York: Springer; 2016.

    Google Scholar 

  107. Müller MB, Schmitt D, Frimmel FH. Fractionation of natural organic matter by size exclusion chromatography-properties and stability of fractions. Environ Sci Technol. 2000;34(23):4867–72.

    Google Scholar 

  108. Berwick L, Greenwood PF, Smernik RJ. The use of MSSV pyrolysis to assist the molecular characterisation of aquatic natural organic matter. Water Res. 2010;44(10):3039–54.

    CAS  PubMed  Google Scholar 

  109. Simpson AJ, Kingery WL, Hatcher PG. The identification of plant derived structures in humic materials using three-dimensional NMR spectroscopy. Environ Sci Technol. 2003;37(2):337–42.

    CAS  PubMed  Google Scholar 

  110. Riedel T, Dittmar T. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2014;86(16):8376–82.

    CAS  PubMed  Google Scholar 

  111. Lundqvist M, Sethson I, Jonsson B-H. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. Langmuir. 2004;20(24):10639–47.

    CAS  PubMed  Google Scholar 

  112. Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML. Protein corona significantly reduces active targeting yield. Chem Commun. 2013;49(25):2557–9.

    CAS  Google Scholar 

  113. Lacerda SHDP, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano. 2009;4(1):365–79.

    Google Scholar 

  114. Li L, Mu Q, Zhang B, Yan B. Analytical strategies for detecting nanoparticle–protein interactions. Analyst. 2010;135(7):1519–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Simpson DC, Smith RD. Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis. 2005;26(7–8):1291–305.

    CAS  PubMed  Google Scholar 

  116. Wojcik R, Li Y, MacCoss MJ, Dovichi NJ. Capillary electrophoresis with Orbitrap-Velos mass spectrometry detection. Talanta. 2012;88:324–9.

    CAS  PubMed  Google Scholar 

  117. Grossman PD, Colburn JC, editors. Capillary electrophoresis: Theory and practice. San Diego: Academic; 2012.

    Google Scholar 

  118. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 2011;5(9):7155–67.

    CAS  PubMed  Google Scholar 

  119. Fajardo C, Saccà ML, Martinez-Gomariz M, Costa G, Nande M, Martin M. Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere. 2013;93(6):1077–83.

    CAS  PubMed  Google Scholar 

  120. Marucco A, Gazzano E, Ghigo D, Enrico E, Fenoglio I. Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2 and carbon nanomaterials. Nanotoxicology. 2016;10(1):1–9.

    CAS  PubMed  Google Scholar 

  121. Benetti F, Fedel M, Minati L, Speranza G, Migliaresi C. Gold nanoparticles: role of size and surface chemistry on blood protein adsorption. J Nanopart Res. 2013;15(6):1694.

    Google Scholar 

  122. Schäffler M, Semmler-Behnke M, Sarioglu H, Takenaka S, Wenk A, Schleh C, et al. Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology. 2013;24(26):265103.

    PubMed  Google Scholar 

  123. Conde J, Larguinho M, Cordeiro A, Raposo LR, Costa PM, Santos S, et al. Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis. Nanotoxicology. 2014;8(5):521–32.

    CAS  PubMed  Google Scholar 

  124. Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol. 2010;100(2):178–86.

    CAS  PubMed  Google Scholar 

  125. Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D. Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione. Comp Biochem Phys C. 2010;151(2):167–74.

    Google Scholar 

  126. Lai W, Wang Q, Li L, Hu Z, Chen J, Fang Q. Interaction of gold and silver nanoparticles with human plasma: analysis of protein corona reveals specific binding patterns. Colloids Surf B. 2017;152:317–25.

    CAS  Google Scholar 

  127. Neal AL. What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology. 2008;17(5):362.

    CAS  PubMed  Google Scholar 

  128. Poirier M, Simard JC, Antoine F, Girard D. Interaction between silver nanoparticles of 20 nm (AgNP20) and human neutrophils: induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregates. J Appl Toxicol. 2014;3(4):404–12.

    Google Scholar 

  129. Ashkarran AA, Ghavami M, Aghaverdi H, Stroeve P, Mahmoudi M. Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Chem Res Toxicol. 2012;25(6):1231–42.

    CAS  PubMed  Google Scholar 

  130. Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, et al. Proteomics study of silver nanoparticles toxicity on Bacillus thuringiensis. Ecotoxicol Environ Saf. 2014;100:122–30.

    CAS  PubMed  Google Scholar 

  131. Jansch M, Stumpf P, Graf C, Rühl E, Müller R. Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm. 2012;428(1):125–33.

    CAS  PubMed  Google Scholar 

  132. Gräfe C, Weidner A, Lühe M, Bergemann C, Schacher FH, Clement JH, et al. Intentional formation of a protein corona on nanoparticles: serum concentration affects protein corona mass, surface charge, and nanoparticle–cell interaction. Int J Biochem Cell B. 2016;75:196–202.

    Google Scholar 

  133. Yallapu MM, Chauhan N, Othman SF, Khalilzad-Sharghi V, Ebeling MC, Khan S, et al. Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles. Biomaterials. 2015;46:1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Landgraf L, Christner C, Storck W, Schick I, Krumbein I, Dähring H, et al. A plasma protein corona enhances the biocompatibility of Au@Fe3O4 Janus particles. Biomaterials. 2015;68(Suppl C):77–88.

    CAS  PubMed  Google Scholar 

  135. Zarei M, Goharshadi EK, Ahmadzadeh H, Samiee S. Improvement of heat dissipation in agarose gel electrophoresis by metal oxide nanoparticles. RSC Adv. 2015;5(108):88655–65.

    CAS  Google Scholar 

  136. Zarei M, Ahmadzadeh H, Goharshadi EK. Embedded ceria nanoparticles in gel improve electrophoretic separation: a preliminary demonstration. Analyst. 2015;140:4434–44.

    CAS  PubMed  Google Scholar 

  137. Sacchetti C, Motamedchaboki K, Magrini A, Palmieri G, Mattei M, Bernardini S, et al. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano. 2013;7(3):1974–89.

    CAS  PubMed  Google Scholar 

  138. Zarei M, Ahmadzadeh H, Goharshadi EK, Farzaneh A. Graphitic carbon nitride embedded hydrogels for enhanced gel electrophoresis. Anal Chim Acta. 2015;887:245–52.

    CAS  PubMed  Google Scholar 

  139. Ghavami M, Saffar S, Emamy BA, Peirovi A, Shokrgozar MA, Serpooshan V, et al. Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv. 2013;3(4):1119–26.

    CAS  Google Scholar 

  140. Canesi L, Ciacci C, Fabbri R, Balbi T, Salis A, Damonte G, et al. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: role of soluble hemolymph proteins. Environ Res. 2016;150:73–81.

    CAS  PubMed  Google Scholar 

  141. Schöttler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol. 2016;11(4):372–7.

    PubMed  Google Scholar 

  142. Pillai GJ, Paul-Prasanth B, Nair SV, Menon D. Influence of surface passivation of 2-Methoxyestradiol loaded PLGA nanoparticles on cellular interactions, pharmacokinetics and tumour accumulation. Colloids Surf B. 2017;150(Suppl C):242–9.

    CAS  Google Scholar 

  143. Giudice MCL, Herda LM, Polo E, Dawson KA. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry. Nat Commun. 2016;7:13475.

    PubMed  PubMed Central  Google Scholar 

  144. Schröder S, Zhang H, Yeung ES, Jänsch L, Zabel C, Wätzig H. Quantitative gel electrophoresis: sources of variation. J Proteome Res. 2008;7(3):1226–34.

    PubMed  Google Scholar 

  145. Ünlü M, Morgan ME, Minden JS. Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis. 1997;18(11):2071–7.

    PubMed  Google Scholar 

  146. Ciborowski P, Silberring J. Proteomic profiling and analytical chemistry: The crossroads. Amsterdam: Elsevier; 2016.

    Google Scholar 

  147. Viswanathan S, Ünlü M, Minden JS. Two-dimensional difference gel electrophoresis. Nat Protoc. 2006;1(3):1351.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zarei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, M., Aalaie, J. Profiling of nanoparticle–protein interactions by electrophoresis techniques. Anal Bioanal Chem 411, 79–96 (2019). https://doi.org/10.1007/s00216-018-1401-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1401-3

Keywords

Navigation