Skip to main content
Log in

Characterization and mapping of secondary metabolites of Streptomyces sp. from caatinga by desorption electrospray ionization mass spectrometry (DESI–MS)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The discovery of new secondary metabolites is a challenge to biotechnologists due to the emergence of superbugs and drug resistance. Knowledge about biodiversity and the discovery of new microorganisms have become major objectives; thus, new habitats like extreme ecosystems have become places of interest to research. In this context, caatinga is an unexplored biome. The ecosystem caatinga is a rich habitat for thermophilic microbes. Its high temperature and dry climate cause selective microbes to flourish and become established. Actinobacteria (Caat 1-54 genus Streptomyces sp.) isolated from the soil of caatinga was investigated to characterize and map its secondary metabolites by desorption electrospray ionization mass spectrometry imaging (DESI–MSI). With this technique, the production of bioactive metabolites was detected and associated with the different morphological differentiation stages within a typical Streptomyces sp. life cycle. High-resolution mass spectrometry, tandem mass spectrometry, UV–Vis profiling and NMR analysis were also performed to characterize the metabolite ions detected by DESI–MS. A novel compound, which is presumed to be an analogue of the antifungal agent lienomycin, along with the antimicrobial compound lysolipin I were identified in this study to be produced by the bacterium. The potency of these bioactive compounds was further studied by disc diffusion assays and their minimum inhibitory concentrations (MIC) against Bacillus and Penicillium were determined. These bioactive metabolites could be useful to the pharmaceutical industry as candidate compounds, especially given growing concern about increasing resistance to available drugs with the emergence of superbugs. Consequently, the unexplored habitat caatinga affords new possibilities for novel bioactive compound discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bull AT, Goodfellow M, Slater JH. Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol. 1992;46(1):219–46.

    Article  CAS  Google Scholar 

  2. Colwell R. Microbial diversity: the importance of exploration and conservation. J Ind Microbiol Biotechnol. 1997;18(5):302–7.

    Article  CAS  Google Scholar 

  3. Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, et al. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol. 2015;33(1):15–26.

    Article  CAS  Google Scholar 

  4. Leal IR, Jd S, Tabarelli M, Lacher TE Jr. Mudando o curso da conservação da biodiversidade na Caatinga do Nordeste do Brasil. Megadiversidade. 2005;1(1):139–46.

    Google Scholar 

  5. Pacchioni RG, Carvalho FM, Thompson CE, Faustino AL, Nicolini F, Pereira TS, et al. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil. Microbiology. 2014;3(3):299–315.

    CAS  Google Scholar 

  6. de Oliveira G, Araújo MB, Rangel TF, Alagador D, Diniz-Filho JAF. Conserving the Brazilian semiarid (Caatinga) biome under climate change. Biodivers Conserv. 2012;21(11):2913–26.

    Article  Google Scholar 

  7. Brasil I. Manual Técnico da Vegetação Brasileira (Manuais Técnicos em Geociências no 1). Fundação Instituto Brasileiro de Geografia e Estatística (IBGE), Rio de Janeiro, Brasil. 1992.

  8. Prado DE. As Caatingas da America do Sul. In: Leal IR, Tabarelli M, da Silva JMC, editors. Ecologia e conservação da Caatinga. Brasil: Editora Universitária UFPE; 2003. p. 3–74.

    Google Scholar 

  9. Waksman SA. Morphology and life cycle. In: Verdoorn F, editor. The actinomycetes: their nature, occurrence, activities, and importance. Washington, D.C.: Chronica Botanica; 1950. p. 45–68.

    Google Scholar 

  10. Bérdy J. Are actinomycetes exhausted as source of secondary metabolites? In: Debabov VG, Dudnik YV,Danilenko V, editors. Biotehnologija, proceedings of the 9th international symposium on the biology ofactinomycetes, Moscow 1994. All-Russia Scientific Research Institute;1995. p. 13–34.

  11. Flardh K, Buttner MJ. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol. 2009;7(1):36–49.

    Article  Google Scholar 

  12. Basilio A, Gonzalez I, Vicente M, Gorrochategui J, Cabello A, Gonzalez A, et al. Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. J Appl Microbiol. 2003;95(4):814–23.

    Article  CAS  Google Scholar 

  13. Lechevalier MP. Identification of aerobic actinomycetes of clinical importance. J Lab Clin Med. 1968;71(6):934–44.

    CAS  PubMed  Google Scholar 

  14. de Vasconcellos RLF, da Silva MCP, Ribeiro CM, Cardoso EJBN. Isolation and screening for plant growth-promoting (PGP) actinobacteria from Araucaria angustifolia rhizosphere soil. Sci Agric. 2010;67(6):743–6.

    Article  Google Scholar 

  15. Andreola F, Fernandes SAP. A microbiota do solo na Agricultura Organica e no Manejo das Culturas. In: da Silveira APD, Freitas S, editors. Microbiota do solo e qualidade ambiental. Campinas: Instituto Agronômico de Campinas-IAC; 2007. p. 21–38.

    Google Scholar 

  16. Li B, Comi TJ, Si T, Dunham SJ, Sweedler JV. A one-step matrix application method for MALDI mass spectrometry imaging of bacterial colony biofilms. J Mass Spectrom. 2016;51(11):1030–5.

    Article  Google Scholar 

  17. Li B, Dunham SJ, Ellis JF, Lange JD, Smith JR, Yang N, et al. A versatile strategy for characterization and imaging of drip flow microbial biofilms. Anal Chem. 2018;90(11):6725–34.

    Article  CAS  Google Scholar 

  18. Lanni EJ, Masyuko RN, Driscoll CM, Aerts JT, Shrout JD, Bohn PW, et al. MALDI-guided SIMS: multiscale imaging of metabolites in bacterial biofilms. Anal Chem. 2014;86(18):9139–45.

    Article  CAS  Google Scholar 

  19. Yang Y-L, Xu Y, Straight P, Dorrestein PC. Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol. 2009;5(12):885.

    Article  CAS  Google Scholar 

  20. Liu W-T, Yang Y-L, Xu Y, Lamsa A, Haste NM, Yang JY, et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc Natl Acad Sci. 2010;107(37):16286–90.

    Article  CAS  Google Scholar 

  21. Chen H, Venter A, Cooks RG. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem Commun. 2006;19:2042–4.

    Article  Google Scholar 

  22. Campbell IS, Ton AT, Mulligan CC. Direct detection of pharmaceuticals and personal care products from aqueous samples with thermally-assisted desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2011;22(7):1285.

    Article  CAS  Google Scholar 

  23. Golf O, Strittmatter N, Karancsi T, Pringle SD, Speller AV, Mroz A, et al. Rapid evaporative ionization mass spectrometry imaging platform for direct mapping from bulk tissue and bacterial growth media. Anal Chem. 2015;87(5):2527–34.

    Article  CAS  Google Scholar 

  24. Watrous JD, Dorrestein PC. Imaging mass spectrometry in microbiology. Nat Rev Microbiol. 2011;9(9):683.

    Article  CAS  Google Scholar 

  25. Jackson AU, Werner SR, Talaty N, Song Y, Campbell K, Cooks RG, et al. Targeted metabolomic analysis of Escherichia coli by desorption electrospray ionization and extractive electrospray ionization mass spectrometry. Anal Biochem. 2008;375(2):272–81.

    Article  CAS  Google Scholar 

  26. Sica VP, Raja HA, El-Elimat T, Oberlies NH. Mass spectrometry imaging of secondary metabolites directly on fungal cultures. RSC Adv. 2014;4(108):63221–7.

    Article  CAS  Google Scholar 

  27. Tata A, Perez CJ, Ore MO, Lostun D, Passas A, Morin S, et al. Evaluation of imprint DESI–MS substrates for the analysis of fungal metabolites. RSC Adv. 2015;5(92):75458–64.

    Article  CAS  Google Scholar 

  28. Tata A, Perez C, Campos ML, Bayfield MA, Eberlin MN, Ifa DR. Imprint desorption electrospray ionization mass spectrometry imaging for monitoring secondary metabolites production during antagonistic interaction of fungi. Anal Chem. 2015;87(24):12298–305.

    Article  CAS  Google Scholar 

  29. Angolini CFF, Vendramini PH, Araújo FD, Araújo WL, Augusti R, Eberlin MN, et al. Direct protocol for ambient mass spectrometry imaging on agar culture. Anal Chem. 2015;87(13):6925–30.

    Article  CAS  Google Scholar 

  30. Prideaux B. Imaging cellular and tissue architecture. In: Howard GC, Brown WE, Auer M, editors. Imaging life: biological systems from atoms to tissues. New York: Oxford University Press; 2014. p. 169–390.

    Google Scholar 

  31. Peti APF. Identificação de agentes antimicrobianos produzidos por actinobactérias de solo com potencial aplicação no controle da mastite bovina. PhD dissertation. São Paulo: Universidade de São Paulo; 2016.

    Google Scholar 

  32. Pawlak J, Zielinski J, Golik J, Gumieniak J, Borowski E. The structure of lienomycin, a pentaene macrolide antitumor antibiotic. J Antibiot. 1980;33(9):989–97.

    Article  CAS  Google Scholar 

  33. Milhaud J, Ponsinet V, Takashi M, Michels B. Interactions of the drug amphotericin B with phospholipid membranes containing or not ergosterol: new insight into the role of ergosterol. Biochim Biophys Acta. 2002;1558(2):95–108.

    Article  CAS  Google Scholar 

  34. Sunazuku T, Omura S, Iwasaki S, Omura S. Chemical modification of macrolides. In: Omura S, editor. Macrolide antibiotics, chemistry, biology, and practice. Orlando: Academic; 1984. p. 99–164.

    Google Scholar 

  35. Martin J-F. Biosynthesis of polyene macrolide antibiotics. Annu Rev Microbiol. 1977;31(1):13–36.

    Article  CAS  Google Scholar 

  36. Nakagomi K, Takeuchi M, Tanaka H, Tomizuka N, Nakajima T. Studies on inhibitors of rat mast cell degranulation produced by microorganisms. J Antibiot. 1990;43(5):462–9.

    Article  CAS  Google Scholar 

  37. Ujikawa K. Antibióticos antifúngicos produzidos por actinomicetos do Brasil e sua determinação preliminar nos meios experimentais. Rev Bras Cienc Farm. 2003;39(2):149–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Dr. Itamar Soares de Melo for providing us with the strain Caat 1-54; Uzma Muzzammal, German Reyes and George Bikopolous for their assistance in the microbiology facility and providing us the Bacillus subtilis; and Ayat Yaseen for providing us the E. coli strain. We acknowledge the financial support from Natural Sciences and Engineering Research Council of Canada (NSERC), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2016-22023-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demian Rocha Ifa.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Electronic supplementary material

ESM 1

(PDF 1234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, J.P., Prova, S.S., Moraes, L.A.B. et al. Characterization and mapping of secondary metabolites of Streptomyces sp. from caatinga by desorption electrospray ionization mass spectrometry (DESI–MS). Anal Bioanal Chem 410, 7135–7144 (2018). https://doi.org/10.1007/s00216-018-1315-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1315-0

Keywords

Navigation