Skip to main content

Advertisement

Log in

Imaging of growth factors on a human tooth root canal by surface-enhanced Raman spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Endodontic treatment of immature permanent teeth with necrotic pulp poses several clinical challenges and is one of the most demanding interventions in endodontics. Recently, with new discoveries in the field of tissue engineering, novel treatment protocols have been established. The most promising treatment modality is revascularization, whose integral part is the exposure of collagen matrix and embedded growth factors. However, optimization of the treatment protocol requires a development of analytical procedures able to analyze growth factors directly on the sample surface. In this work, method based on surface-enhanced Raman spectroscopy (SERS) was developed to investigate the influence of the time of the medical treatment using EDTA on exposure and accessibility of the growth factors, namely TGF-ß1, BMP-2, and bFGF on the dentine surface. The nanotags, which consist of magnetic Fe3O4@Ag nanocomposite covalently functionalized by tagged antibodies (anti-TGF-ß1-Cy3, anti-BMP-2-Cy5, and anti-bFGF-Cy7), were employed as a SERS substrate. Each antibody was coupled with a unique label allowing us to perform a parallel analysis of all three growth factors within one analytical run. Developed methodology presents an interesting alternative to a fluorescence microscopy and in contrary allows evaluating a chemical composition and thus minimizing possible false-positive results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dhillon H, Kaushik M, Sharma R. Regenerative endodontics-creating new horizons: regenerative endodontics. J Biomed Mater Res B Appl Biomater. 2016;104:676–85. https://doi.org/10.1002/jbm.b.33587.

    Article  CAS  PubMed  Google Scholar 

  2. Wigler R, Kaufman AY, Lin S, Steinbock N, Hazan-Molina H, Torneck CD. Revascularization: a treatment for permanent teeth with necrotic pulp and incomplete root development. J Endod. 2013;39:319–26. https://doi.org/10.1016/j.joen.2012.11.014.

    Article  PubMed  Google Scholar 

  3. Nosrat A, Homayounfar N, Oloomi K. Drawbacks and unfavorable outcomes of regenerative endodontic treatments of necrotic immature teeth: a literature review and report of a case. J Endod. 2012;38:1428–34. https://doi.org/10.1016/j.joen.2012.06.025.

    Article  PubMed  Google Scholar 

  4. Žižka R, Šedý J. Paradigm shift from stem cells to cell-free regenerative endodontic procedures: a critical review. Stem Cells Dev. 2017;26:147–53. https://doi.org/10.1089/scd.2016.0264.

    Article  PubMed  Google Scholar 

  5. Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR. Dentine as a bioactive extracellular matrix. Arch Oral Biol. 2012;57:109–21. https://doi.org/10.1016/j.archoralbio.2011.07.008.

    Article  CAS  PubMed  Google Scholar 

  6. Galler KM, Buchalla W, Hiller K-A, Federlin M, Eidt A, Schiefersteiner M, et al. Influence of root canal disinfectants on growth factor release from dentin. J Endod. 2015;41:363–8. https://doi.org/10.1016/j.joen.2014.11.021.

    Article  PubMed  Google Scholar 

  7. Kakaboura A. Smear layer on prepared dentin. Odontostomatol Proodos. 1989;43:211–23.

    CAS  PubMed  Google Scholar 

  8. Ferracane JL, Cooper PR, Smith AJ. Dentin matrix component solubilization by solutions at pH relevant to self-etching dental adhesives. J Adhes Dent. 2013;15:407–12. https://doi.org/10.3290/j.jad.a29536.

    Article  CAS  PubMed  Google Scholar 

  9. Galler KM, Widbiller M, Buchalla W, Eidt A, Hiller K-A, Hoffer PC, et al. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. Int Endod J. 2016;49:581–90. https://doi.org/10.1111/iej.12492.

    Article  CAS  PubMed  Google Scholar 

  10. Zeng Q, Nguyen S, Zhang H, Chebrolu HP, Alzebdeh D, Badi MA, et al. Release of growth factors into root canal by irrigations in regenerative endodontics. J Endod. 2016;42:1760–6. https://doi.org/10.1016/j.joen.2016.04.029.

    Article  PubMed  Google Scholar 

  11. Duncan HF, Smith AJ, Fleming GJP, Reid C, Smith G, Cooper PR. Release of bio-active dentine extracellular matrix components by histone deacetylase inhibitors (HDACi). Int Endod J. 2017;50:24–38. https://doi.org/10.1111/iej.12588.

    Article  CAS  PubMed  Google Scholar 

  12. Hisamoto M, Goto M, Muto M, Nio-Kobayashi J, Iwanaga T, Yokoyama A. A systematic analysis for localization of predominant growth factors and their receptors involved in murine tooth germ differentiation using in situ hybridization technique. Biomed Res. 2015;36:205–17. https://doi.org/10.2220/biomedres.36.205.

    Article  CAS  PubMed  Google Scholar 

  13. Li S, Pan Y. Differential expression of transforming growth factor-beta1, connective tissue growth factor, phosphorylated-SMAD2/3 and phosphorylated-ERK1/2 during mouse tooth development. J Mol Histol. 2017;48:347–55. https://doi.org/10.1007/s10735-017-9733-4.

    Article  CAS  PubMed  Google Scholar 

  14. Niwa T, Yamakoshi Y, Yamazaki H, Karakida T, Chiba R, Hu JC-C, et al. The dynamics of TGF-β in dental pulp, odontoblasts and dentin. Sci Rep. 2018;8:4450. https://doi.org/10.1038/s41598-018-22823-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao S, Sloan AJ, Murray PE, Lumley PJ, Smith AJ. Ultrastructural localisation of TGF-β exposure in dentine by chemical treatment. Histochem J. 2000;32:489–94.

    Article  CAS  Google Scholar 

  16. Ionita I. Diagnosis of tooth decay using polarized micro-Raman confocal spectroscopy. Rom Rep Phys. 2009;61:567–74.

    CAS  Google Scholar 

  17. Zavala-Alonso V, Loyola-Rodríguez JP, Terrones H, Patiño-Marín N, Martínez-Castañón GA, Anusavice K. Analysis of the molecular structure of human enamel with fluorosis using micro-Raman spectroscopy. J Oral Sci. 2012;54:93–8.

    Article  CAS  Google Scholar 

  18. Wang Y, Yao X. Morphological/chemical imaging of demineralized dentin layer in its natural, wet state. Dent Mater. 2010;26:433–42. https://doi.org/10.1016/j.dental.2010.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beier BD, Quivey RG, Berger AJ. Raman microspectroscopy for species identification and mapping within bacterial biofilms. AMB Express. 2012;2:35.

    Article  Google Scholar 

  20. Cepeda-Pérez E, Moreno-Hernández C, López-Luke T, Monzón-Hernández D, de la Rosa E. Evaluation of bacterial presence in the root canal by Raman spectroscopy: a preliminary study. Biomed Phys Eng Express. 2016;2:065006. https://doi.org/10.1088/2057-1976/2/6/065006.

    Article  Google Scholar 

  21. Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26:4.

    Article  CAS  Google Scholar 

  22. Balzerova A, Fargasova A, Markova Z, Ranc V, Zboril R. Magnetically-assisted surface enhanced Raman spectroscopy (MA-SERS) for label-free determination of human immunoglobulin G (IgG) in blood using Fe3O4@Ag nanocomposite. Anal Chem. 2014;86:11107–14. https://doi.org/10.1021/ac503347h.

    Article  CAS  PubMed  Google Scholar 

  23. Ranc V, Markova Z, Hajduch M, Prucek R, Kvitek L, Kaslik J, et al. Magnetically assisted surface-enhanced Raman scattering selective determination of dopamine in an artificial cerebrospinal fluid and a mouse striatum using Fe3O4/Ag nanocomposite. Anal Chem. 2014;86:2939–46. https://doi.org/10.1021/ac500394g.

    Article  CAS  PubMed  Google Scholar 

  24. Chaloupková Z, Balzerová A, Bařinková J, Medříková Z, Šácha P, Beneš P, et al. Label-free determination of prostate specific membrane antigen in human whole blood at nanomolar levels by magnetically assisted surface enhanced Raman spectroscopy. Anal Chim Acta. 2017; https://doi.org/10.1016/j.aca.2017.10.008.

    Article  Google Scholar 

  25. Panacek A, Balzerova A, Prucek R, Ranc V, Vecerova R, Husickova V, et al. Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite. Colloids Surf B-Biointerfaces. 2013;110:191–8. https://doi.org/10.1016/j.colsurfb.2013.04.031.

    Article  CAS  PubMed  Google Scholar 

  26. Marková Z, Šišková K, Filip J, Šafářová K, Prucek R, Panáček A, et al. Chitosan-based synthesis of magnetically-driven nanocomposites with biogenic magnetite core, controlled silver size, and high antimicrobial activity. Green Chem. 2012;14:2550. https://doi.org/10.1039/c2gc35545k.

    Article  CAS  Google Scholar 

  27. Prucek R, Panacek A, Fargasova A, Ranc V, Masek V, Kvitek L, et al. Re-crystallization of silver nanoparticles in a highly concentrated NaCl environment-a new substrate for surface enhanced IR-visible Raman spectroscopy. CrystEngComm. 2011;13:2242–8. https://doi.org/10.1039/c0ce00776e.

    Article  CAS  Google Scholar 

  28. Wang Y, Schlücker S. Rational design and synthesis of SERS labels. Analyst. 2013;138:2224–38. https://doi.org/10.1039/C3AN36866A.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received financial support from project NPU LO1305 of the Ministry of Education, Youth and Sports of the Czech Republic; project IGA_PrF_2018_021, CZ.1.07/2.3.00/30.0004, and Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2015073; and project 16-02938S of the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all the authors.

Corresponding author

Correspondence to Václav Ranc.

Ethics declarations

The approval of the ethic committee of the Faculty Hospital Olomouc and Medical Faculty of Palacký University for the study was obtained (NV-18-08-00328).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranc, V., Žižka, R., Chaloupková, Z. et al. Imaging of growth factors on a human tooth root canal by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 410, 7113–7120 (2018). https://doi.org/10.1007/s00216-018-1311-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1311-4

Keywords

Navigation