Skip to main content
Log in

A fluorescent material for the detection of chlortetracycline based on molecularly imprinted silica–graphitic carbon nitride composite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new fluorescent probe based on graphitic carbon nitride (g-C3N4) combined with molecularly imprinted silica was successfully fabricated and used to selectively recognize chlortetracycline (CTC). The g-C3N4 used in this study has the characteristics of low toxicity and high chemical stability. This synthetic composite was characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, UV spectroscopy, X-ray diffraction, and fluorescence spectroscopy. The material was used to detect CTC by the fluorescence quenching technique. The fluorescence quenching was due to g-C3N4 and the benzene ring of CTC through ππ electron donor–acceptor interaction and electrostatic force. Hydrogen bonds formed between CTC and 3-aminopropyltriethoxysilane during the polymerization process. Eventually, a considerable amount of selective recognition holes were formed in the composite material and could specifically recognize the template molecule CTC. In addition, the probe strategy was successfully applied to milk analysis, and the recoveries ranged from 90.1% to 95.7%, with relative standard deviations of 1.8–2.8%; the detection limit for CTC was 8 ng mL-1. The results indicate that this method combined the sensitivity of fluorescence detection with the excellent selectivity of a molecularly imprinted polymer. The new material can be widely used in the detection of dairy products.

Schematic of synthesis of the MIP-capped g-C3N4 by sol-gel reaction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tong L, Qin L, Xie C, Liu H, Wang Y, Guan C, et al. Distribution of antibiotics in alluvial sediment near animal breeding areas at the Jianghan Plain, central China. Chemosphere. 2017;186:100–7.

    Article  CAS  Google Scholar 

  2. Wang HX, Ren LS, Yu X, Hu J, Chen Y, He GS, et al. Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment. Food Control. 2017;80:217–25.

    Article  CAS  Google Scholar 

  3. Wang R, Chen M, Feng F, Zhang J, Sui Q, Tong J, et al. Effects of chlorotetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion. Bioresour Technol. 2017;238:57–69.

    Article  CAS  Google Scholar 

  4. Chiesa LM, Nobile M, Panseri S, Arioli F. Antibiotic use in heavy pigs: comparison between urine and muscle samples from food chain animals analysed by HPLC-MS/MS. Food Chem. 2017;235:111–8.

    Article  CAS  Google Scholar 

  5. Guo ZY, Gai PP, Duan J, Zhang HN, Wang S. Tetracycline selective electrode based on molecularly imprinted polymer particles. Chin Chem Lett. 2010;21:1235–8.

    Article  CAS  Google Scholar 

  6. Muriuki FK, Ogara WO, Njeruh FM, Mitema ES. Tetracycline residue levels in cattle meat from Nairobi slaughter house in Kenya. J Vet Sci. 2001;2:97–101.

    CAS  PubMed  Google Scholar 

  7. Zhang YD, Zheng N, Han RW, Zheng BQ, Yu ZN, Li SL, et al. Occurrence of tetracyclines, sulfonamides, sulfamethazine and quinolones in pasteurized milk and UHT milk in China's market. Food Control. 2014;36:238–42.

    Article  CAS  Google Scholar 

  8. Long CJ, Deng BY, Sun SJ, Meng S. Simultaneous determination of chlorotetracycline, ampicillin and sarafloxacin in milk using capillary electrophoresis with electrochemiluminescence detection. Food Addit Contam Part A. 2017;34:24–31.

    Article  CAS  Google Scholar 

  9. Szlyk E, Kowalczyk-Marzec A, Koter I. Determination of Tetracyclines by near-infrared (NIR) spectroscopy and partial least-squares (PLS) regression method. Chem Anal. 2007;52:605–17.

    CAS  Google Scholar 

  10. Phiroonsoontorn N, Sansuk S, Santaladchaiyakit Y, Srijaranai S. The use of dissolvable layered double hydroxide components in an in situ solid-phase extraction for chromatographic determination of tetracyclines in water and milk samples. J Chromatogr A. 2017;1519:38–44.

    Article  CAS  Google Scholar 

  11. Liu H, Chen X, Mu L, Wang J, Sun B. Application of quantum dot–molecularly imprinted polymer core–shell particles sensitized with graphene for optosensing of N ε-carboxymethyllysine in dairy products. J Agric Food Chem. 2016;64:4801–6.

    Article  CAS  Google Scholar 

  12. Ganiga M, Cyriac J. An ascorbic acid sensor based on cadmium sulphide quantum dots. Anal Bioanal Chem. 2016;408:3699–706.

    Article  CAS  Google Scholar 

  13. Ren XH, Chen LG. Preparation of molecularly imprinted polymer coated quantum dots to detect nicosulfuron in water samples. Anal Bioanal Chem. 2015;407:8087–95.

    Article  CAS  Google Scholar 

  14. Sheng Z, Chen LG. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine. Anal Bioanal Chem. 2017;409:6081–90.

    Article  CAS  Google Scholar 

  15. Mo Z, Xu H, Chen ZG, She XJ, Song YH, Wu JJ, et al. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl Catal B Environ. 2018;225:154–61.

    Article  CAS  Google Scholar 

  16. Song XP, Yang Q, Jiang XH, Yin MY, Zhou LM. Porous graphitic carbon nitride nanosheets prepared under self-producing atmosphere for highly improved photocatalytic activity. Appl Catal B Environ. 2017;217:322–30.

    Article  CAS  Google Scholar 

  17. Tang Y, Su Y, Yang N, Zhang L, Lv Y. Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem. 2014;86:4528–35.

    Article  CAS  Google Scholar 

  18. Wang HY, Lu QJ, Li MX, Li H, Liu YL, Li HT, et al. Electrochemically prepared oxygen and sulfur co-doped graphitic carbon nitride quantum dots for fluorescence determination of copper and silver ions and biothiols. Anal Chim Acta. 2018;1027:121–9.

    Article  CAS  Google Scholar 

  19. Li YH, Cai JB, Liu FJ, Yu HW, Lin F, Yang H, et al. Highly crystalline graphitic carbon nitride quantum dots as a fluorescent probe for detection of Fe (III) via an innner filter effect. Microchim Acta. 2018;185:134.

    Article  Google Scholar 

  20. Yin Y, Zhang YM, Gao TL, Yao T, Han JC, Han ZB, et al. One-pot evaporation–condensation strategy for green synthesis of carbon nitride quantum dots: an efficient fluorescent probe for ion detection and bioimaging. Mater Chem Phys. 2017;194:293–301.

    Article  CAS  Google Scholar 

  21. Rong MC, Lin LP, Song XH, Zhao TT, Zhong YX, Yan JW, et al. A label-free fluorescence sensing approach for selective and sensitive detection of 2,4,6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets. Anal Chem. 2015;87:1288–96.

    Article  CAS  Google Scholar 

  22. Chen LG, Zhang XP, Sun L, Xu Y, Zeng QL, Wang H, et al. Fast and selective extraction of sulfonamides from honey based on magnetic molecularly imprinted polymer. J Agric Food Chem. 2009;57:10073–80.

    Article  CAS  Google Scholar 

  23. Hu YL, Pan JL, Zhang KG, Lian HX, Li GK. Novel applications of molecularly-imprinted polymers in sample preparation. Trends Anal Chem. 2013;43:37–52.

    Article  CAS  Google Scholar 

  24. Chen LX, Xu SF, Li JH. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev. 2011;40:2922–42.

    Article  CAS  Google Scholar 

  25. Chen LG, Li B. Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey. Food Chem. 2013;141:23–8.

    Article  CAS  Google Scholar 

  26. Liu GY, Yang X, Li TF, She YX, Wang SS, Wang J, et al. Preparation of a magnetic molecularly imprinted polymer using g-C3N4-Fe3O4 for atrazine adsorption. Mater Lett. 2015;160:472–5.

    Article  CAS  Google Scholar 

  27. Li JS, Wang H, Guo ZK, Wang YG, Ma HM, Ren X, et al. A "turn-off" fluorescent biosensor for the detection of mercury (II) based on graphite carbon nitride. Talanta. 2017;162:46–51.

    Article  CAS  Google Scholar 

  28. Yang XM, Zhu SS, Dou Y, Zhuo Y, Luo YW, Feng YJ. Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline. Talanta. 2014;122:36–42.

    Article  CAS  Google Scholar 

  29. Hatamie A, Marahel F, Sharifat A. Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence. Talanta. 2018;176:518–25.

    Article  CAS  Google Scholar 

  30. Valverde RS, García MDG, Galera MM, Goicoechea HC. Determination of tetracyclines in surface water by partial least squares using multivariate calibration transfer to correct the effect of solid phase preconcentration in photochemically induced fluorescence signals. Anal Chim Acta. 2006;562:85–93.

    Article  CAS  Google Scholar 

  31. Li ZQ, Qi MY, Tu CY, Wang WP, Chen JR, Wang AJ. Highly efficient removal of chlorotetracycline from aqueous solution using graphene oxide/TiO2 composite: properties and mechanism. Appl Surf Sci. 2017;425:765–75.

    Article  CAS  Google Scholar 

  32. Zhang XH, Gao RQ, Li DP, Yin HY, Zhang JL, Cao HY, et al. Study on interaction between 5-bromo-4-thio-2′-deoxyuridine and human serum albumin by spectroscopy and molecular docking. Spectrochim Acta A. 2015;136:1775–81.

    Article  CAS  Google Scholar 

  33. Tu RY, Liu BH, Wang ZY, Gao DM, Wang F, Fang QL, et al. Amine-Capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal Chem. 2008;80:3458–65.

    Article  CAS  Google Scholar 

  34. Quayle OR. The parachors of organic compounds. An interpretation and catalogue. Chem Rev. 1953;53:439–589.

    Article  CAS  Google Scholar 

  35. Li XW, Li CY, Chen LG. Preparation of multifunctional magnetic-fluorescent nanocomposites for analysis of tetracycline hydrochloride. New J Chem. 2015;39:9976–82.

    Article  CAS  Google Scholar 

  36. Bekale L, Agudelo D, Tajmirriahi HA. Effect of polymer molecular weight on chitosan-protein interaction. Colloids Surf B: Biointerfaces. 2015;125:309–17.

    Article  CAS  Google Scholar 

  37. Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981;20:3096–102.

    Article  CAS  Google Scholar 

  38. Schneider MJ, Darwish AM, Freeman DW. Simultaneous multiresidue determination of tetracyclines and fluoroquinolones in catfish muscle using high performance liquid chromatography with fluorescence detection. Anal Chim Acta. 2007;586:269–74.

    Article  CAS  Google Scholar 

  39. Mónicacecilia VM, Felixguillermo RR, Susanne R. Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD. Food Chem. 2009;117:545–52.

    Article  Google Scholar 

  40. Koesukwiwat U, Jayanta S, Leepipatpiboon N. Validation of a liquid chromatography-mass spectrometry multi-residue method for the simultaneous determination of sulfonamides, tetracyclines, and pyrimethamine in milk. J Chromatogr A. 2007;1140:147–56.

    Article  CAS  Google Scholar 

  41. Yang CY, Xiong Y, He C, Zhang ZJ. Molecularly imprinted on-line solid-phase extraction combined with flow injection chemiluminescence for determination of chlortetracycline. Chin J Chem. 2007;24:273–7.

    CAS  Google Scholar 

  42. Jing T, Niu JW, Xia H, Dai Q, Zheng HY, Hao QL, et al. Online coupling of molecularly imprinted solid-phase extraction to HPLC for determination of trace tetracycline antibiotic residues in egg samples. J Sep Sci. 2011;34:1469–76.

    Article  CAS  Google Scholar 

  43. Qu GR, Zheng SL, Liu YM, Xie W, Wu AB, Zhang DB. Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples. J Chromatogr B. 2009;877:3187–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (no. 2572017EB08), the Natural Science Foundation of Heilongjiang Province (JJ2018ZR0081), Harbin Science and Technology Innovation Talent Research Special Funds (2016RAQXJ151), and the Open Project of the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (no. ES201607).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Ding or Ligang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Ding, J. & Chen, L. A fluorescent material for the detection of chlortetracycline based on molecularly imprinted silica–graphitic carbon nitride composite. Anal Bioanal Chem 410, 7103–7112 (2018). https://doi.org/10.1007/s00216-018-1310-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1310-5

Keywords

Navigation