Skip to main content

Advertisement

Log in

One-step synthesized flower-like materials used for sensitively detecting amyloid precursor protein

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we developed a new method to detect Alzheimer’s disease (AD)-related amyloid precursor protein (APP). A composite material containing horseradish peroxidase (HRP), APP antibody, and Cu3(PO4)2 was synthesized as the biosensor by co-precipitation method. In this competitive immunoassay, APP was first conjugated onto the microplate surface with the help of poly-L-lysine as the coating reagent; the composite materials were then attached onto the microplate through the interaction of APP and antibody; the HRP can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and formed colored species. Therefore, the more APP in the detection solution (free form), the less composite material was combined with the immobilized APP on the microplate, resulting in the production of less colored TMB species. A series of detection parameters were studied, such as the composite material synthesis process, the concentration, and reaction time of different compounds. Our method has higher sensitivity compared with the similar immunoassay without using composite materials (the limits of detection are 0.3 and 3 ng/mL, respectively), and can be used for real samples (human serum) detection. The detection results using our method are consistent with the ELISA results, which is useful for the AD detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Selkoe DJ. Alzheimer's disease: Genes, proteins, and therapy. Physiol Rev. 2001;81(2):741–66.

    Article  CAS  PubMed  Google Scholar 

  2. Rauk A. The chemistry of Alzheimer’s disease. Chem Soc Rev. 2009;38(9):2698–715.

    Article  CAS  PubMed  Google Scholar 

  3. Holtzman DM, Morris JC, Goate AM. Alzheimer's disease: the challenge of the second century. Sci Transl Med. 2011;3(77):77sr1. https://doi.org/10.1126/scitranslmed.3002369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pliassova A, Lopes JP, Lemos C, Oliveira CR, Cunha RA, Agostinho P. The association of amyloid-beta protein precursor with alpha- and beta-secretases in mouse cerebral cortex synapses is altered in early Alzheimer's disease. Mol Neurobiol. 2016;53(8):5710–21. https://doi.org/10.1007/s12035-015-9491-9.

    Article  CAS  PubMed  Google Scholar 

  5. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6. https://doi.org/10.1126/science.1072994.

    Article  CAS  PubMed  Google Scholar 

  6. Muller T, Meyer HE, Egensperger R, Marcus K. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. Prog Neurobiol. 2008;85:393–406.

    Article  CAS  PubMed  Google Scholar 

  7. Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem. 2008;283:29615–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mockett BG, Richter M, Abraham WC, Mueller UC. Therapeutic potential of secreted amyloid precursor protein APPs alpha. Front Mol Neurosci. 2017; 10 doi:https://doi.org/10.3389/fnmol.2017.00030.

  9. Kuo Y-C, Rajesh R. A critical overview of therapeutic strategy and advancement for Alzheimer's disease treatment. J Taiwan Inst Chem E. 2017;77:92–105. https://doi.org/10.1016/j.jtice.2017.05.011.

    Article  CAS  Google Scholar 

  10. Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G. () Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep. 2017; 7 doi:https://doi.org/10.1038/srep41802.

  11. Kepp KP. Ten challenges of the amyloid hypothesis of Alzheimer's disease. J Alzheimers Dis. 2017;55(2):447–57. https://doi.org/10.3233/jad-160550.

    Article  PubMed  Google Scholar 

  12. Ohno M. Alzheimer's therapy targeting the beta-secretase enzyme BACE1: benefits and potential limitations from the perspective of animal model studies. Brain Res Bull. 2016;126:183–98. https://doi.org/10.1016/j.brainresbull.2016.04.007.

    Article  CAS  PubMed  Google Scholar 

  13. Canter RG, Penney J, Tsai L-H. The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature. 2016;539(7628):187–96. https://doi.org/10.1038/nature20412.

    Article  PubMed  Google Scholar 

  14. Wang C, Wang K, Wang Z. Development of gold nanoparticle based colorimetric method for quantitatively studying the inhibitors of Cu2+/Zn2+ induced β-amyloid peptide assembly. Anal Chim Acta. 2015;858:42–8. https://doi.org/10.1016/j.aca.2014.12.006.

    Article  CAS  PubMed  Google Scholar 

  15. Xia N, Liu L, Harrington MG, Wang J, Zhou F. Regenerable and simultaneous surface plasmon resonance detection of Aβ (1−40) and Aβ (1−42) peptides in cerebrospinal fluids with signal amplification by streptavidin conjugated to an N-terminus-specific antibody. Anal Chem. 2010;82(24):10151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang C, Liu D, Wang Z. Resonance light scattering as a powerful tool for sensitive detection of β-amyloid peptide by gold nanoparticle probes. Chem Commun. 2011;47(33):9339–41.

    Article  CAS  Google Scholar 

  17. Wang CK, Liu DJ, Wang ZX. Gold nanoparticle based dot-blot immunoassay for sensitively detecting Alzheimer's disease related beta-amyloid peptide. Chem Commun. 2012;48(67):8392–4. https://doi.org/10.1039/c2cc33568a.

    Article  CAS  Google Scholar 

  18. Montoliu-Gaya L, Villegas S. Protein structures in Alzheimer's disease: the basis for rationale therapeutic design. Arch Biochem Biophys. 2015;588:1–14. https://doi.org/10.1016/j.abb.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  19. Yang H, Yang H, Xie Z, Wang P, Bi J. Self-assembling nanofibers alter the processing of amyloid precursor protein in a transgenic mouse model of Alzheimer's disease. Neurol Res. 2015;37(1):84–91. https://doi.org/10.1179/1743132814y.0000000417.

    Article  PubMed  Google Scholar 

  20. Singh DB, Gupta MK, Kesharwani RK, Sagar M, Dwivedi S, Misra K. Molecular drug targets and therapies for Alzheimer's disease. Transl Neurosci. 2014;5(3):203–17. https://doi.org/10.2478/s13380-014-0222-x.

    Article  Google Scholar 

  21. Ge J, Lei J, Zare RN. Protein-inorganic hybrid nanoflowers. Nat Nanotechnol. 2012;7(7):428–32.

    Article  CAS  PubMed  Google Scholar 

  22. Wei T, Du D, Zhu MJ, Lin Y, Dai Z. An improved ultrasensitive enzyme-linked immunosorbent assay using hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites. ACS Appl Mater Interfaces. 2016;8(10):6329–35. https://doi.org/10.1021/acsami.5b11834.

    Article  CAS  PubMed  Google Scholar 

  23. Lin Z, Xiao Y, Yin Y, Hu W, Liu W, Yang H. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS Appl Mater Interfaces. 2014;6(13):10775–82. https://doi.org/10.1021/am502757e.

    Article  CAS  PubMed  Google Scholar 

  24. Sun J, Ge J, Liu W, Lan M, Zhang H, Wang P. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale. 2014;6(1):255–62. https://doi.org/10.1039/c3nr04425d.

    Article  CAS  PubMed  Google Scholar 

  25. Wu Z, Li X, Li F, Yue H, He C, Xie F. Enantioselective transesterification of (R,S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Adv. 2014;4(64):33998–4002. https://doi.org/10.1039/C4RA04431B.

    Article  CAS  Google Scholar 

  26. Somturk B, Hancer M, Ocsoy I, Ozdemir N. Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Trans. 2015;44(31):13845–52. https://doi.org/10.1039/C5DT01250C.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu L, Gong L, Zhang Y, Wang R, Ge J, Liu Z. Rapid detection of phenol using a membrane containing laccase nanoflowers. Chem-Asian J. 2013;8(10):2358–60. https://doi.org/10.1002/asia.201300020.

    Article  CAS  PubMed  Google Scholar 

  28. Altinkaynak C, Yilmaz I, Koksal Z, Özdemir H, Ocsoy I, Özdemir N. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. Int J Biol Macromol. 2016;84(Supplement C):402–9. https://doi.org/10.1016/j.ijbiomac.2015.12.018.

    Article  CAS  PubMed  Google Scholar 

  29. Ocsoy I, Dogru E, Usta S. A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity. Enzyme Microb Technol. 2015;75(Supplement C):25–9. https://doi.org/10.1016/j.enzmictec.2015.04.010.

    Article  CAS  PubMed  Google Scholar 

  30. Ball J, Henry N, Montelaro R, Newman M. A versatile synthetic peptide-based ELISA for identifying antibody epitopes. J Immunol Methods. 1994;171(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  31. Stearns NA, Zhou SX, Petri M, Binder SR, Pisetsky DS. The use of poly-L-lysine as a capture agent to enhance the detection of antinuclear antibodies by ELISA. PLoS One. 2016;11(9):e0161818. https://doi.org/10.1371/journal.pone.0161818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Han Z, Wang Y, Duan X. Biofunctional polyelectrolytes assembling on biosensors – a versatile surface coating method for protein detections. Anal Chim Acta. 2017;964:170–7. https://doi.org/10.1016/j.aca.2017.01.051.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Qu Y, Ye X, Wu K, Li C. Fabrication of an electrochemical immunosensor for alpha-fetoprotein based on a poly-L-lysine-single-walled carbon nanotubes/Prussian blue composite film interface. J Solid State Electrochem. 2016;20(8):2217–22. https://doi.org/10.1007/s10008-016-3229-0.

    Article  CAS  Google Scholar 

  34. Zhou J, Zhao S, Zhang J, Zhang L, Cai Y, Zhou L. An indirect competitive enzyme-linked immunosorbent assay for bisphenol-A based on the synthesis of a poly-L-lysine-hapten conjugate as a coating antigen. Anal Methods. 2013;5(6):1570–6. https://doi.org/10.1039/c3ay26220k.

    Article  CAS  Google Scholar 

  35. Fischer RS, Myers KA, Gardel ML, Waterman CM. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nat Protoc. 2012;7(11):2056–66. https://doi.org/10.1038/nprot.2012.127.

    Article  CAS  PubMed  Google Scholar 

  36. Martell JD, Deerinck TJ, Lam SS, Ellisman MH, Ting AY. Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nat Protoc. 2017;12(9):1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li B, Du Y, Li T, Dong S. Investigation of 3,3',5,5'-tetramethylbenzidine as colorimetric substrate for a peroxidatic DNAzyme. Anal Chim Acta. 2009;651(2):234–40. https://doi.org/10.1016/j.aca.2009.09.009.

    Article  CAS  PubMed  Google Scholar 

  38. Wang C, Chen D, Wang Q, Tan R. Kanamycin detection based on the catalytic ability enhancement of gold nanoparticles. Biosens Bioelectron. 2017;91:262–7. https://doi.org/10.1016/j.bios.2016.12.042.

    Article  CAS  PubMed  Google Scholar 

  39. Wen XF, He HY, Lee LJ. Specific antibody immobilization with biotin-poly(L-lysine)-g-poly(ethylene glycol) and protein A on microfluidic chips. J Immunol Methods. 2009;350(1/2):97–105. https://doi.org/10.1016/j.jim.2009.07.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21305032), China Postdoctoral Science Foundation (No. 2014M551522), Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1402073B), and Hong Kong Scholar Program (No. XJ2017008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengke Wang.

Ethics declarations

This is not a clinical study on humans with an ethics committee. The biological samples were transferred to our laboratory from the Affiliated Hospital of Jiangsu University. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no competing interests

Electronic supplementary material

ESM 1

(PDF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Tan, R. & Wang, Q. One-step synthesized flower-like materials used for sensitively detecting amyloid precursor protein. Anal Bioanal Chem 410, 6901–6909 (2018). https://doi.org/10.1007/s00216-018-1293-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1293-2

Keywords

Navigation