Skip to main content
Log in

Synthesis and application of ratio fluorescence probe for chloride

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

As chloride ions (Cl) play a vital role in maintaining normal physiological activity, detection of chloride ions is quite urgent. Hence, we developed chloride fluorescence probes to highly selectively and sensitively monitor chloride ions. The probe M2 with single emission has a high fluorescence quantum yield (Φ = 45%), and it is capable of quantitative detection of Cl under physiological conditions (pH = 7.4) and pH = 5.0 with a linear range of 0.1–4.0 mM; nevertheless, it is of the switch-off type. We further synthesized a ratiometric fluorescent probe MY with M2 as raw material, which featured excellent selectivity and anti-interference, and large two-photon cross section (555 GM). The probe is conveniently used to detect Cl in water samples and biological samples including human sweat, serum, and urine samples, indicating it holds great promise for chloride detection and biological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffmann EK, Dunham PB. Membrane mechanisms and intracellular signalling in cell volume regulation. Inter Rev Cytol. 1995;161(16):173–262.

    Article  CAS  Google Scholar 

  2. Perron A, Mutoh H, Akemann W, Knöpfel A. Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front Mol Neurosci. 2009;2(10):5.

    PubMed  PubMed Central  Google Scholar 

  3. Ko SK, Kim SK, Lynch VM, Shin I. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nat Chem. 2014;6(10):885–92.

    Article  CAS  Google Scholar 

  4. Soto-Cerrato V, Manuel-Manresa P, Hernando E, et al. Facilitated anion transport induces hyperpolarization of the cell membrane that triggers differentiation and cell death in Cancer stem cells. J Am Chem Soc. 2015;137(50):15892.

    Article  CAS  PubMed  Google Scholar 

  5. Stauber T, Jentsch TJ. Chloride in vesicular trafficking and function. Annu Rev Physiol. 2013;75(75):453–77.

    Article  CAS  PubMed  Google Scholar 

  6. Yu SP, Canzoniero LM, Choi DW. Ion homeostasis and apoptosis. Curr Opin Cell Biol. 2001;13(4):405–11.

    Article  CAS  PubMed  Google Scholar 

  7. Todde V, Veenhuis M, J I KVD. Autophagy: principles and significance in health and disease. BBA-Biomembranes. 2009;1792(1):3–13.

    CAS  PubMed  Google Scholar 

  8. Koch MC, Steinmeyer K, Lorenz C, Jentsch TJ. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science. 1992;257(5071):797–800.

    Article  CAS  PubMed  Google Scholar 

  9. Busschaert N, Park SH, Baek KH, Shin I. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations. Nat Chem. 2017;9(7):667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14(4):226.

    Article  PubMed  PubMed Central  Google Scholar 

  11. O”Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373(9678):1891–904.

    Article  Google Scholar 

  12. Cinti S, Fiore L, Massoud R, Cortese C, Arduini F. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta. 2018:179–86.

  13. Geddes CD, Apperson K, Karolin J, Birch DJS. Chloride-sensitive fluorescent indicators. Anal Biochem. 2001;293(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  14. Pope AJ, Leigh RA. Characterisation of chloride transport at the tonoplast of higher plants using a chloride-sensitive fluorescent probe: effects of other anions, membrane potential, and transport inhibitors. Planta. 1990;181(3):406–13.

    Article  CAS  PubMed  Google Scholar 

  15. Jayaraman S, Teitler L, Skalski B, Verkman AS. Long-wavelength iodide-sensitive fluorescent indicators for measurement of functional CFTR expression in cells. Am J Phys. 1999;277(1):1008–18.

    Article  Google Scholar 

  16. Arosio D, Ratto GM. Twenty years of fluorescence imaging of intracellular chloride. Front Cell Neurosci. 2014;8:258–8.

  17. Markova O, Mukhtarov M, Real E, Jacob Y, Bregestovski P. Genetically encoded chloride indicator with improved sensitivity. J Neurosci Methods. 2010;170(1):67–76.

    Article  CAS  Google Scholar 

  18. Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of supramolecular anion recognition. Chem Rev. 2015;115(15):8038–155.

    Article  CAS  PubMed  Google Scholar 

  19. Garrett GE, Gibson GL, Straus RN, Taylor MS. Chalcogen bonding in solution: interactions of Benzotelluradiazoles with anionic and uncharged Lewis bases. J Am Chem Soc. 2015;137(12):4126–33.

    Article  CAS  PubMed  Google Scholar 

  20. Lim JY, Marques I, Thompson AL, Beer PD. Chalcogen bonding macrocycles and Rotaxanes for anion recognition. J Am Chem Soc. 2017;139(8):3122.

    Article  CAS  PubMed  Google Scholar 

  21. Sessler JL, Cai J, Gong HY, Hay BP. A pyrrolyl-based triazolophane: a macrocyclic receptor with CH and NH donor groups that exhibits a preference for pyrophosphate anions. J Am Chem Soc. 2010;132(132):14058–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Busschaert N, Kirby IL, Young S, Gale PA. Squaramides as potent transmembrane anion transporters. Angew Chem Int Edit. 2012;51(18):4426–30.

    Article  CAS  Google Scholar 

  23. Dickert FL, Schalley CA Ed: Analytical methods in supramolecular chemistry. Anal Bioanal Chem. 2007; 389(7–8):2039–2040.

    Article  CAS  Google Scholar 

  24. Macchioni A, Ciancaleoni G, Zuccaccia C, Zuccaccia D. Determining accurate molecular sizes in solution through NMR diffusion spectroscopy. Chem Soc Rev. 2008;39(23):479–89.

    Article  Google Scholar 

  25. Yang ZR, Wang MM, Wang XS, Yin XB. Boric-acid-functional lanthanide metal-organic frameworks for selective ratiometric fluorescence detection of fluoride ions. Anal Chem. 2017;89(3):1930.

    Article  CAS  PubMed  Google Scholar 

  26. Yin HQ, Yang J, Yin XB. Ratiometric fluorescence sensing and real-time detection of water in organic solvents with one-pot synthesis of Ru@MIL-101(Al)-NH2. Anal Chem. 2017;89(24):13434–40.

    Article  CAS  PubMed  Google Scholar 

  27. Ashton TD, Jolliffe KA, Pfeffer FM. Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem Soc Rev. 2015;44(14):4547–95.

    Article  CAS  PubMed  Google Scholar 

  28. Nolan EM, Lippard SJ. Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J Am Chem Soc. 2007;129(18):5910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wencel D, Moore JP, Stevenson N, McDonagh C. Ratiometric fluorescence-based dissolved carbon dioxide sensor for use in environmental monitoring applications. Anal Bioanal Chem. 2010;398(5):1899–907.

    Article  CAS  PubMed  Google Scholar 

  30. Han X, Song X, Yu F, Chen L. A ratiometric fluorescent probe for imaging and quantifying anti-apoptotic effects of GSH under temperature stress. Chem Sci. 2017;8(10):6991–7002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li H, Wang X, Cai Z, Zhao P. Ratiometric fluorescent sensing of copper ion based on chromaticity change strategy. Anal Bioanal Chem. 2017;409(28):1–8.

    Article  CAS  Google Scholar 

  32. Li P, Xie T, Fan N, Tang B. Ratiometric fluorescence imaging for distinguishing chloride concentration between normal and ischemic ventricular myocytes. Chem Commun. 2012;48(15):2077–9.

    Article  CAS  Google Scholar 

  33. Li P, Zhang S, Fan N, Tang B. Quantitative fluorescence ratio imaging of Intralysosomal chloride ions with single excitation/dual maximum emission. Chem-Eur J. 2014;20(37):11760–7.

    Article  CAS  PubMed  Google Scholar 

  34. Hu YJ, Liu Y, Zhang LX, Zhao RM, Qu SS. Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct. 2005;750(1–3):174–8.

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (No. 21575055) and the Research Funds for the Central Universities (lzujbky-2017-k09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixia Zhang.

Ethics declarations

The study using biological samples has been approved by the People’s hospital of Gansu province Ethics Committee and the Lanzhou University Ethics Committee, and has been performed in accordance with the ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 2.56 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Zhang, F., Wang, Y. et al. Synthesis and application of ratio fluorescence probe for chloride. Anal Bioanal Chem 410, 6507–6516 (2018). https://doi.org/10.1007/s00216-018-1250-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1250-0

Keywords

Navigation