Skip to main content
Log in

Headspace analysis for screening of volatile organic compound profiles of electronic juice bulk material

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of electronic nicotine delivery systems continues to gain popularity, and there is concern for potential health risks from inhalation of aerosol and vapor produced by these devices. An analytical method was developed that provided quantitative and qualitative chemical information for characterizing the volatile constituents of bulk electronic cigarette liquids (e-liquids) using a static headspace technique. Volatile organic compounds (VOCs) were screened from a convenience sample of 146 e-liquids by equilibrating 1 g of each e-liquid in amber vials for 24 h at room temperature. Headspace was transferred to an evacuated canister and quantitatively analyzed for 20 VOCs as well as tentatively identified compounds using a preconcentrator/gas chromatography/mass spectrometer system. The e-liquids were classified into flavor categories including brown, fruit, hybrid dairy, menthol, mint, none, tobacco, and other. 2,3-Butanedione was found at the highest concentration in brown flavor types, but was also found in fruit, hybrid dairy, and menthol flavor types. Benzene was observed at concentrations that are concerning given the carcinogenicity of this compound (max 1.6 ppm in a fruit flavor type). The proposed headspace analysis technique coupled with partition coefficients allows for a rapid and sensitive prediction of the volatile content in the liquid. The technique does not require onerous sample preparation, dilution with organic solvents, or sampling at elevated temperatures. Static headspace screening of e-liquids allows for the identification of volatile chemical constituents which is critical for identifying and controlling emission of potentially hazardous constituents in the workplace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tierney PA, Karpinski CD, Brown JE, Luo W, Pankow JF. Flavour chemicals in electronic cigarette fluids. Tob Control. 2016;25(e1):e10–5. https://doi.org/10.1136/tobaccocontrol-2014-052175.

    Article  PubMed  Google Scholar 

  2. Allen JG, Flanigan SS, LeBlanc M, Vallarino J, MacNaughton P, Stewart JH, et al. Flavoring chemicals in e-cigarettes: diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environ Health Perspect. 2016;124(6):733–9. https://doi.org/10.1289/ehp.1510185.

    Article  CAS  PubMed  Google Scholar 

  3. Behar RZ, Luo W, Lin SC, Wang Y, Valle J, Pankow JF, et al. Distribution, quantification and toxicity of cinnamaldehyde in electronic cigarette refill fluids and aerosols. Tob Control. 2016;25(Suppl 2):ii94–ii102. https://doi.org/10.1136/tobaccocontrol-2016-053224.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Uryupin A, Peregudov A, Kochetkov K, Bulatnikova L, Kiselev S, Nekrasov Y. Qualitative and quantitative compositions of fluids for electronic cigarettes. Pharm Chem J. 2013;46(11):687–92.

    Article  CAS  Google Scholar 

  5. Schoenborn CA, Gindi RM. Cigarette smoking status among current adult e-cigarette users, by age group—National Health Interview Survey, United States, 2015. Morb Mortal Wkly Rpt MMWR 2016;65(1177).

  6. Hess I, Lachireddy K, Capon A. A systematic review of the health risks from passive exposure to electronic cigarette vapour. Public Health Res Pract. 2016;26(2):e2621617.

    Article  Google Scholar 

  7. Chen J, Bullen C, Dirks K. A comparative health risk assessment of electronic cigarettes and conventional cigarettes. Int J Environ Res Public Health. 2017;14(4):382. https://doi.org/10.3390/ijerph14040382.

    Article  CAS  PubMed Central  Google Scholar 

  8. Reidel DB, Radicioni DG, Clapp MP, Ford MAA, Abdelwahab DS, Rebuli DME, et al. E-cigarette use causes a unique innate immune response in the lung involving increased neutrophilic activation and altered mucin secretion. Am J Respir Crit Care Med. 2017; https://doi.org/10.1164/rccm.201708-1590OC.

  9. Chun L, Moazed F, Calfee C, Matthay M, Gotts J. Pulmonary toxicity of e-cigarettes. Am J Phys Lung Cell Mol Phys. 2017;313(2):L193–206.

    Google Scholar 

  10. Williams M, Bozhilov K, Ghai S, Talbot P. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs. PLoS One. 2017;12(4):e0175430. https://doi.org/10.1371/journal.pone.0175430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uchiyama S, Ohta K, Inaba Y, Kunugita N. Determination of carbonyl compounds generated from the E-cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. Anal Sci. 2013;29(12):1219–22.

    Article  CAS  PubMed  Google Scholar 

  12. Kim YH, Kim KH. A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes. Sci Rep. 2015;5:16383. https://doi.org/10.1038/srep16383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Famele M, Ferranti C, Abenavoli C, Palleschi L, Mancinelli R, Draisci R. The chemical components of electronic cigarette cartridges and refill fluids: review of analytical methods. Nicotine Tob Res. 2015;17(3):271–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hsu G, Sun JY, Zhu S-H. Evolution of electronic cigarette brands from 2013-2014 to 2016-2017: analysis of brand websites. J Med Internet Res. 2018;20(3):E80.

  15. Villanti AC, Johnson AL, Ambrose BK, Cummings KM, Stanton CA, Rose SW, et al. Flavored tobacco product use in youth and adults: findings from the first wave of the PATH study (2013–2014). Am J Prev Med. 2017;53(2):139–51. https://doi.org/10.1016/j.amepre.2017.01.026.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harrell MB, Weaver SR, Loukas A, Creamer M, Marti CN, Jackson CD, et al. Flavored e-cigarette use: characterizing youth, young adult and adult users. Prev Med Rep. 2017;5:33–40. https://doi.org/10.1016/j.pmedr.2016.11.001.

    Article  CAS  PubMed  Google Scholar 

  17. Beauval N, Howsam M, Antherieu S, Allorge D, Soyez M, Garçon G, et al. Trace elements in e-liquids—development and validation of an ICP-MS method for the analysis of electronic cigarette refills. Regul Toxicol Pharmacol. 2016;79:144–8. https://doi.org/10.1016/j.yrtph.2016.03.024.

    Article  CAS  PubMed  Google Scholar 

  18. Medana C, Aigotti R, Sala C, Dal Bello F, Santoro V, Gastaldi D, et al. Analysis of nicotine alkaloids and impurities in liquids for e-cigarettes by LC-MS, GC-MS, and ICP-MS. Spectr: Current Trends Mass Spectrom. 2016;14(2):20–8.

    Google Scholar 

  19. Uchiyama S, Inaba Y, Kunugita N. Determination of acrolein and other carbonyls in cigarette smoke using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine. J Chromatogr A. 2010;1217(26):4383–8. https://doi.org/10.1016/j.chroma.2010.04.056.

    Article  CAS  PubMed  Google Scholar 

  20. Uchiyama S, Senoo Y, Hayashida H, Inaba Y, Nakagome H, Kunugita N. Determination of chemical compounds generated from second-generation e-cigarettes using a sorbent cartridge followed by a two-step elution method. Anal Sci. 2016;32(5):549–55. https://doi.org/10.2116/analsci.32.549.

    Article  CAS  PubMed  Google Scholar 

  21. Papoušek R, Pataj Z, Nováková P, Lemr K, Barták K. Determination of acrylamide and acrolein in smoke from tobacco and e-cigarettes. Chromatographia. 2014;77:1145–51.

    Article  CAS  Google Scholar 

  22. Breiev K, Burseg KMM, O'Connell G, Hartungen E, Biel S, Cahours X, et al. An online method for the analysis of volatile organic compounds in electronic cigarette aerosol based on proton transfer reaction mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(6):691–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cho Y-H, Shin H-S. Use of a gas-tight syringe sampling method for the determination of tobacco-specific nitrosamines in E-cigarette aerosols by liquid chromatography-tandem mass spectrometry. Anal Methods. 2015;7(11):4472–80. https://doi.org/10.1039/C5AY00210A.

    Article  CAS  Google Scholar 

  24. Martinez RE, Dhawan S, Sumner W, Williams BJ. On-line chemical composition analysis of refillable electronic cigarette aerosol-measurement of nicotine and nicotyrine. Nicotine Tob Res. 2015;17(10):1263–9. https://doi.org/10.1093/ntr/ntu334.

    Article  CAS  PubMed  Google Scholar 

  25. Jo S-H, Kim K-H. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol. J Chromatogr A. 2016;1429:369–73. https://doi.org/10.1016/j.chroma.2015.12.061.

    Article  CAS  PubMed  Google Scholar 

  26. Dai J, Kim K-H, Szulejko JE, Jo S-H. A simple method for the parallel quantification of nicotine and major solvent components in electronic cigarette liquids and vaped aerosols. Microchem J. 2017;133:237–45. https://doi.org/10.1016/j.microc.2017.02.029.

    Article  CAS  Google Scholar 

  27. Lim H-H, Shin H-S. Measurement of aldehydes in replacement liquids of electronic cigarettes by headspace gas chromatography-mass spectrometry. Bull Kor Chem Soc. 2013;34(9):2691–6.

    Article  CAS  Google Scholar 

  28. Flora JW, Meruva N, Huang CB, Wilkinson CT, Ballentine R, Smith DC, et al. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols. Regul Toxicol Pharmacol. 2016;74(Suppl C):1–11. https://doi.org/10.1016/j.yrtph.2015.11.009.

    Article  CAS  PubMed  Google Scholar 

  29. Poklis JL, Wolf CE, Peace MR. Ethanol concentration in 56 refillable electronic cigarettes liquid formulations determined by headspace gas chromatography with flame ionization detector (HS-GC-FID). Drug Test Anal. 2017; https://doi.org/10.1002/dta.2193.

  30. Barhdadi S, Canfyn M, Courselle P, Rogiers V, Vanhaecke T, Deconinck E. Development and validation of a HS/GC–MS method for the simultaneous analysis of diacetyl and acetylpropionyl in electronic cigarette refills. J Pharm Biomed Anal. 2017;142:218–24. https://doi.org/10.1016/j.jpba.2017.04.050.

    Article  CAS  PubMed  Google Scholar 

  31. Crenshaw MD, Tefft ME, Buehler SS, Brinkman MC, Clark PI, Gordon SM. Determination of nicotine, glycol, propylene glycol and water in electronic cigarette fluids using quantitative 1H NMR. Magn Reson Chem. 2016;54:901–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kubica P, Kot-Wasik A, Wasik A, Namieśnik J. “Dilute & shoot” approach for rapid determination of trace amounts of nicotine in zero-level e-liquids by reversed phase liquid chromatography and hydrophilic interactions liquid chromatography coupled with tandem mass spectrometry-electrospray ionization. J Chromatogr A. 2013;1289(Suppl C):13–8. https://doi.org/10.1016/j.chroma.2013.02.078.

    Article  CAS  PubMed  Google Scholar 

  33. Kavvalakis MP, Stivaktakis PD, Tzatzarakis MN, Kouretas D, Liesivuori J, Alegakis AK, et al. Multicomponent analysis of replacement liquids of electronic cigarettes using chromatographic techniques. J Anal Toxicol. 2015;39(4):262–9. https://doi.org/10.1093/jat/bkv002.

    Article  CAS  PubMed  Google Scholar 

  34. El-Hellani A, El-Hage R, Baalbaki R, Talih S, Shihadeh A, Saliba N. Quantification of free-base and protonated nicotine in electronic cigarette liquids and aerosol emissions. Chem Res Toxicol. 2015;28(8):1532–7. https://doi.org/10.1021/acs.chemrestox.5b00107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Itoh N, Bell SEJ. High dilution surface-enhanced Raman spectroscopy for rapid determination of nicotine in e-liquids for electronic cigarettes. Analyst. 2017;142(6):994–8. https://doi.org/10.1039/C6AN02286C.

    Article  CAS  PubMed  Google Scholar 

  36. Famele M, Palmisani J, Ferranti C, Abenavoli C, Palleschi L, Mancinelli R, et al. Liquid chromatography with tandem mass spectrometry method for the determination of nicotine and minor tobacco alkaloids in electronic cigarette refill liquids and second-hand generated aerosol. J Sep Sci. 2017;40(5):1049–56. https://doi.org/10.1002/jssc.201601076.

    Article  CAS  PubMed  Google Scholar 

  37. Oh J-A, Shin H-S. Identification and quantification of several contaminated compounds in replacement liquids of electronic cigarettes by gas chromatography–mass spectrometry. J Chromatogr Sci. 2015;53(6):841–8. https://doi.org/10.1093/chromsci/bmu146.

    Article  CAS  PubMed  Google Scholar 

  38. Kim H-J, Shin H-S. Determination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2013;1291(Suppl C):48–55. https://doi.org/10.1016/j.chroma.2013.03.035.

    Article  CAS  PubMed  Google Scholar 

  39. Lim H-H, Shin H-S. Determination of volatile organic compounds including alcohols in refill fluids and cartridges of electronic cigarettes by headspace solid-phase micro extraction and gas chromatography–mass spectrometry. Anal Bioanal Chem. 2017;409(5):1247–56. https://doi.org/10.1007/s00216-016-0049-0.

    Article  CAS  PubMed  Google Scholar 

  40. OSHA. Occupational exposure to flavoring substances: health effects and hazard control. 2010. https://www.osha.gov/dts/shib/shib10142010.html. Accessed 12 June 2018.

  41. FEMA. Respiratory health and safety in the flavoring manufacturing workplace. 2012. https://www.femaflavor.org/sites/default/files/2018-06/FEMA%202012%20Respiratory%20Health%20and%20Safety%20in%20Workplace.pdf. Accessed 12 June 2018.

  42. Liu Z. Preparation of botanical samples for biomedical research. Endocr Metab Immune Disord Drug Targets. 2008;8(2):112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herrington JS, Myers C. Electronic cigarette solutions and resultant aerosol profiles. J Chromatogr A. 2015;1418:192–9. https://doi.org/10.1016/j.chroma.2015.09.034.

    Article  CAS  PubMed  Google Scholar 

  44. Varlet V, Farsalinos K, Augsburger M, Thomas A, Etter J-F. Toxicity assessment of refill liquids for electronic cigarettes. Int J Environ Res Public Health. 2015;12(5):4796–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. NCBI. PubChem compound database; CID=177. https://pubchem.ncbi.nlm.nih.gov/compound/177. Accessed 12 June 2018.

  46. Bekki K, Uchiyama S, Ohta K, Inaba Y, Nakagome H, Kunugita N. Carbonyl compounds generated from electronic cigarettes. Int J Environ Res Public Health. 2014;11(11):11192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rohr AC, Wilkins CK, Clausen PA, Hammer M, Nielsen GD, Wolkoff P, et al. Upper airway and pulmonary effects of oxidation products of (+)-α-pinene, d-limonene, and isoprene in BALB/c mice. Inhal Toxicol. 2002;14(7):663–84. https://doi.org/10.1080/08958370290084575.

    Article  CAS  PubMed  Google Scholar 

  48. Pankow J, Kim K, McWhirter K, Luo W, Escobedo J, Strongin R, et al. Benzene formation in electronic cigarettes. PLoS One. 2017;12(3):e0173055. https://doi.org/10.1371/journal.pone.0173055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brown JE, Luo W, Isabelle LM, Pankow JF. Candy flavorings in tobacco. N Engl J Med. 2014;370(23):2250–2. https://doi.org/10.1056/NEJMc1403015.

    Article  CAS  PubMed  Google Scholar 

  50. NIOSH. Criteria for a recommended standard: occupational exposure to diacetyl and 2,3-pentanedione. 2016. https://www.cdc.gov/niosh/docs/2016-111/pdfs/2016-111-all.pdf. Accessed 12 June 2018.

  51. Farsalinos KE, Kistler KA, Gillman G, Voudris V. Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins. Nicotine Tob Res. 2015;17(2):168–74. https://doi.org/10.1093/ntr/ntu176.

    Article  CAS  PubMed  Google Scholar 

  52. Pankow JF. Calculating compound dependent gas-droplet distributions in aerosols of propylene glycol and glycerol from electronic cigarettes. J Aerosol Sci. 2017;107:9–13. https://doi.org/10.1016/j.jaerosci.2017.02.003.

    Article  CAS  Google Scholar 

  53. Valentine G, Jatlow P, Coffman M, Nadim H, Gueorguieva R, Sofuoglu M. The effects of alcohol-containing e-cigarettes on young adult smokers. Drug Alcohol Depend. 2016;159:272–6. https://doi.org/10.1016/j.drugalcdep.2015.12.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kyle Hatcher for preparing headspace samples. The authors would also like to thank Stephen Jackson and Jennifer Roberts for reviewing the manuscript. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. In addition, citations to websites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these websites. All web addresses referenced in this document were accessible as of the publication date.

Funding

This study was funded by NIOSH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan F. LeBouf.

Ethics declarations

This study did not involve research on human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeBouf, R.F., Burns, D.A., Ranpara, A. et al. Headspace analysis for screening of volatile organic compound profiles of electronic juice bulk material. Anal Bioanal Chem 410, 5951–5960 (2018). https://doi.org/10.1007/s00216-018-1215-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1215-3

Keywords

Navigation