Skip to main content
Log in

Stepwise frontal affinity chromatography model for drug and protein interaction

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Frontal affinity chromatography is an efficient technique that combines affinity interaction and high-performance liquid chromatography, and frontal analysis has been used in studying the interaction between drugs and proteins. Based on frontal analysis, stepwise frontal analysis has been established. The present study aimed to use the Lineweaver–Burk plot in stepwise frontal analysis by taking the weighted average of time data. Commercial human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP) columns were used as an affinity column. Warfarin and digitoxin were chosen as model drugs for the HSA column, whereas verapamil and tamsulosin were selected as model drugs for the AGP column. The time data obtained by frontal analysis and stepwise frontal analysis were compared, and the results revealed good correlation (r2 = 0.9946–0.9998). Frontal analysis and stepwise frontal analysis were also used to analyze the equilibrium dissociation constants (Kd) of model drugs on the HSA and AGP columns. The Kd values were compared with literature values, which revealed the same order of magnitude. These results illustrate that conversion of the time data is reasonable and feasible. The Lineweaver–Burk plot can be used in the stepwise frontal analysis model to study the characteristics of the interaction between drugs and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zheng X, Li Z, Podariu MI, Hage DS. Determination of rate constants and equilibrium constants for solution-phase drug-protein interactions by ultrafast affinity extraction. Anal Chem. 2014;86(13):6454–60. https://doi.org/10.1021/ac501031y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maple HJ, Garlish RA, Whitcombe I, Hold A, Prosser CE, Ford D, et al. Identification of differential protein binding affinities in an atropisomeric pharmaceutical compound by noncovalent mass spectrometry, equilibrium dialysis, and nuclear magnetic resonance. Anal Chem. 2013;85(12):5958–64. https://doi.org/10.1021/ac400760p.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu J, Yi X, Huang P, Chen S, Wu Y. Drug-protein binding of Danhong injection and the potential influence of drug combination with aspirin: Insight by ultrafiltration LC-MS and molecular modeling. J Pharm Biomed Anal. 2017;134:100–7. https://doi.org/10.1016/j.jpba.2016.11.028.

    Article  CAS  PubMed  Google Scholar 

  4. Sandblad P, Arnell R, Samuelsson J, Fornstedt T. Approach for reliable evaluation of drug proteins interactions using surface plasmon resonance technology. Anal Chem. 2009;81(9):3551–9. https://doi.org/10.1021/ac900299p.

    Article  CAS  PubMed  Google Scholar 

  5. Cramer J, Krimmer SG, Fridh V, Wulsdorf T, Karlsson R, Heine A, et al. Elucidating the origin of long residence time binding for inhibitors of the metalloprotease thermolysin. ACS Chem Biol. 2017;12(1):225–33. https://doi.org/10.1021/acschembio.6b00979.

    Article  CAS  PubMed  Google Scholar 

  6. Brachet G, Respaud R, Arnoult C, Henriquet C, Dhommee C, Viaud-Massuard MC, et al. Increment in drug loading on an antibody-drug conjugate increases its binding to the human neonatal Fc receptor in vitro. Mol Pharm. 2016;13(4):1405–12. https://doi.org/10.1021/acs.molpharmaceut.6b00082.

    Article  CAS  PubMed  Google Scholar 

  7. Cherney LT, Krylov SN. Slow-equilibration approximation in kinetic size exclusion chromatography. Anal Chem. 2016;88(7):4063–70. https://doi.org/10.1021/acs.analchem.6b00415.

    Article  CAS  PubMed  Google Scholar 

  8. Rafols C, Zarza S, Bosch E. Molecular interactions between some non-steroidal anti-inflammatory drugs (NSAID's) and bovine (BSA) or human (HSA) serum albumin estimated by means of isothermal titration calorimetry (ITC) and frontal analysis capillary electrophoresis (FA/CE). Talanta. 2014;130:241–50. https://doi.org/10.1016/j.talanta.2014.06.060.

    Article  CAS  PubMed  Google Scholar 

  9. Charpentier TH, Thompson LE, Liriano MA, Varney KM, Wilder PT, Pozharski E, et al. The effects of CapZ peptide (TRTK-12) binding to S100B-Ca2+ as examined by NMR and X-ray crystallography. J Mol Biol. 2010;396(5):1227–43. https://doi.org/10.1016/j.jmb.2009.12.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu L, Yang F, Chen L, Meehan EJ, Huang M. A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography. J Struct Biol. 2008;162(1):40–9. https://doi.org/10.1016/j.jsb.2007.12.004.

    Article  CAS  PubMed  Google Scholar 

  11. Li Q, Qiao P, Chen X, Wang J, Bian L, Zheng X. Affinity chromatographic methodologies based on immobilized voltage dependent anion channel isoform 1 and application in protein-ligand interaction analysis and bioactive compounds screening from traditional medicine. J Chromatogr A. 2017;1495:31–45. https://doi.org/10.1016/j.chroma.2017.03.023.

    Article  CAS  PubMed  Google Scholar 

  12. Tong Z, Hage DS. Characterization of interaction kinetics between chiral solutes and human serum albumin by using high-performance affinity chromatography and peak profiling. J Chromatogr A. 2011;1218(39):6892–7. https://doi.org/10.1016/j.chroma.2011.08.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gargano AF, Lammerhofer M, Lonn H, Schoenmakers PJ, Leek T. Mucin-based stationary phases as tool for the characterization of drug-mucus interaction. J Chromatogr A. 2014;1351:70–81. https://doi.org/10.1016/j.chroma.2014.05.031.

    Article  CAS  PubMed  Google Scholar 

  14. Lacroix A, Edwardson TGW, Hancock MA, Dore MD, Sleiman HF. Development of DNA nanostructures for high-affinity binding to human serum albumin. J Am Chem Soc. 2017;139(21):7355–62. https://doi.org/10.1021/jacs.7b02917.

    Article  CAS  PubMed  Google Scholar 

  15. Chakma B, Jain P, Singh NK, Goswami P. Development of an indicator displacement based detection of malaria targeting HRP-II as biomarker for application in point-of-care settings. Anal Chem. 2016;88(20):10316–21. https://doi.org/10.1021/acs.analchem.6b03315.

    Article  CAS  PubMed  Google Scholar 

  16. Anguizola J, Joseph KS, Barnaby OS, Matsuda R, Alvarado G, Clarke W, et al. Development of affinity microcolumns for drug-protein binding studies in personalized medicine: interactions of sulfonylurea drugs with in vivo glycated human serum albumin. Anal Chem. 2013;85(9):4453–60. https://doi.org/10.1021/ac303734c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faroongsarng D. Assessment of the dissociation energetics of some selected ligand drugs bound on human serum albumin by differential scanning calorimetry. AAPS PharmSciTech. 2016;17(2):474–81. https://doi.org/10.1208/s12249-015-0372-3.

    Article  CAS  PubMed  Google Scholar 

  18. Hanada K, Ohta T, Hirai M, Arai M, Ogata H. Enantioselective binding of propranolol, disopyramide, and verapamil to human α1-acid glycoprotein. J Pharm Sci. 2000;89(6):751–7. https://doi.org/10.1002/(SICI)1520-6017(200006)89:6<751::AID-JPS6>3.0.CO;2-8.

    Article  CAS  PubMed  Google Scholar 

  19. Chen K, Li F, Li J, Cai H, Strom S, Bisello A, et al. Induction of leptin resistance through direct interaction of C-reactive protein with leptin. Nat Med. 2006;12(4):425–32. https://doi.org/10.1038/nm1372.

    Article  CAS  PubMed  Google Scholar 

  20. Wepf A, Glatter T, Schmidt A, Aebersold R, Gstaiger M. Quantitative interaction proteomics using mass spectrometry. Nat Methods. 2009;6(3):203–5. https://doi.org/10.1038/nmeth.1302.

    Article  CAS  PubMed  Google Scholar 

  21. Michalska K, Gruba E, Cielecka-Piontek J, Bednarek E. Chiral separation of tedizolid using charge single isomer derivatives of cyclodextrins by capillary electrokinetic chromatography. J Pharm Biomed Anal. 2016;120:402–12. https://doi.org/10.1016/j.jpba.2015.11.022.

    Article  CAS  PubMed  Google Scholar 

  22. Han S, Zhang T, Feng L, Lv N, Wang S. Screening of target compounds from Fructus Piperis using high α1A adrenoreceptor expression cell membrane chromatography online coupled with high performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2013;81-82:133–7. https://doi.org/10.1016/j.jpba.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  23. He H, Han S, Zhang T, Zhang J, Wang S, Hou J. Screening active compounds acting on the epidermal growth factor receptor from Radix scutellariae via cell membrane chromatography online coupled with HPLC/MS. J Pharm Biomed Anal. 2012;62:196–202. https://doi.org/10.1016/j.jpba.2011.12.025.

    Article  CAS  PubMed  Google Scholar 

  24. Du H, Wang S, Ren J, Lv N, He L. Revealing multi-binding sites for taspine to VEGFR-2 by cell membrane chromatography zonal elution. J Chromatogr B. 2012;887-888:67–72. https://doi.org/10.1016/j.jchromb.2012.01.011.

    Article  CAS  Google Scholar 

  25. Wei F, Wang S, Lv N, Bu Y, Xie X. Characterization the affinity of α1A adrenoreceptor by cell membrane chromatography with frontal analysis and stoichiometric displacement model. J Chromatogr B. 2017;1040:273–81. https://doi.org/10.1016/j.jchromb.2016.11.002.

    Article  CAS  Google Scholar 

  26. Ma WN, Yang L, Lv YN, Fu J, Zhang YM, He LC. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method. J Chromatogr A. 2017;1503:12–20. https://doi.org/10.1016/j.chroma.2017.04.053.

    Article  CAS  PubMed  Google Scholar 

  27. Li ZH, Gao HY, Li JY, Zhang YJ. Identification of bioactive compounds in Shaoyao-Gancao decoction using β2-adrenoceptor affinity chromatography. J Sep Sci. 2017;40(12):2558–64. https://doi.org/10.1002/jssc.201700113.

    Article  CAS  PubMed  Google Scholar 

  28. Gezici O, Ayar A. Stepwise frontal analysis to derive equilibrium sorption data for copper and aniline on functionalized sporopollenin. Clean Soil Air Water. 2009;37(4-5):349–54. https://doi.org/10.1002/clen.200900001.

    Article  CAS  Google Scholar 

  29. Bush A, Vasen G, Constantinou A, Dunayevich P, Patop IL, Blaustein M, et al. Yeast GPCR signaling reflects the fraction of occupied receptors, not the number. Mol Syst Biol. 2016;12(12):898. https://doi.org/10.15252/msb.20166910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhattacharya A, Das S, Mukherjee TK. Insights into the thermodynamics of polymer nanodot–human serum albumin association: a Spectroscopic and calorimetric approach. Langmuir. 2016;32(46):12067–77. https://doi.org/10.1021/acs.langmuir.6b02658.

    Article  CAS  PubMed  Google Scholar 

  31. Rimac H, Dufour C, Debeljak Z, Zorc B, Bojic M. Warfarin and flavonoids do not share the same binding region in binding to the IIA subdomain of human serum albumin. Molecules. 2017;22(7):1153. https://doi.org/10.3390/molecules22071153.

    Article  CAS  Google Scholar 

  32. Zheng X, Podariu M, Bi C, Hage DS. Development of enhanced capacity affinity microcolumns by using a hybrid of protein cross-linking/modification and immobilization. J Chromatogr A. 2015;1400:82–90. https://doi.org/10.1016/j.chroma.2015.04.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schneider EK, Huang JX, Carbone V, Baker M, Azad MA, Cooper MA, et al. Drug-drug plasma protein binding interactions of ivacaftor. J Mol Recognit. 2015;28(6):339–48. https://doi.org/10.1002/jmr.2447.

    Article  CAS  PubMed  Google Scholar 

  34. Hage DS. High-performance affinity chromatography: a powerful tool for studying serum protein binding. J Chromatogr B. 2002;768(1):3–30.

    Article  CAS  Google Scholar 

  35. Hanada K, Tochikura N, Ogata H. Selective binding of tamsulosin to genetic variants of human alpha1-acid glycoprotein. Biol Pharm Bull. 2007;30(8):1593–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 81673398)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sicen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Sui, Y. & Wang, S. Stepwise frontal affinity chromatography model for drug and protein interaction. Anal Bioanal Chem 410, 5807–5815 (2018). https://doi.org/10.1007/s00216-018-1194-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1194-4

Keywords

Navigation