Skip to main content

Advertisement

Log in

Flow field-flow fractionation and multi-angle light scattering as a powerful tool for the characterization and stability evaluation of drug-loaded metal–organic framework nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Asymmetric flow field-flow fractionation (AF4) coupled with UV-Vis spectroscopy, multi-angle light scattering (MALS) and refractive index (RI) detection has been applied for the characterization of MIL-100(Fe) nanoMOFs (metal–organic frameworks) loaded with nucleoside reverse transcriptase inhibitor (NRTI) drugs for the first time. Empty nanoMOFs and nanoMOFs loaded with azidothymidine derivatives with three different degrees of phosphorylation were examined: azidothymidine (AZT, native drug), azidothymidine monophosphate (AZT-MP), and azidothymidine triphosphate (AZT-TP). The particle size distribution and the stability of the nanoparticles when interacting with drugs have been determined in a time frame of 24 h. Main achievements include detection of aggregate formation in an early stage and monitoring nanoMOF morphological changes as indicators of their interaction with guest molecules. AF4-MALS proved to be a useful methodology to analyze nanoparticles engineered for drug delivery applications and gave fundamental data on their size distribution and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Furman PA, Fyfe JA, Stclair MH, Weinhold K, Rideout JL, Freeman GA, et al. Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human-immunodeficiency-virus reverse-transcriptase. PNAS. 1986;83(21):8333–7.

    Article  CAS  PubMed  Google Scholar 

  2. Kukhanova M, Krayevsky A, Prusoff W, Cheng YC. Design of anti-HIV compounds: from nucleoside to nucleoside 5'-triphosphate analogs. Problems and perspectives. Curr Pharm Des. 2000;6(5):585–98.

    Article  CAS  PubMed  Google Scholar 

  3. Loke SL, Stein CA, Zhang XH, Mori K, Nakanishi M, Subasinghe C, et al. Characterization of oligonucleotide transport into living cells. PNAS. 1989;86(10):3474–8.

    Article  CAS  PubMed  Google Scholar 

  4. Li XL, Chan WK. Transport, metabolism and elimination mechanisms of anti-HIV agents. Adv Drug Deliv Rev. 1999;39(1–3):81–103.

    Article  CAS  PubMed  Google Scholar 

  5. Hillaireau H, Le Doan T, Appel M, Couvreur P. Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J Control Release. 2006;116(3):346–52.

    Article  CAS  PubMed  Google Scholar 

  6. Hillaireau H, Le Doan T, Besnard M, Chacun H, Janin J, Couvreur P. Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules. Int J Pharm. 2006;324(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  7. Hillaireau H, Le Doan T, Chacun H, Janin J, Couvreur P. Encapsulation of mono- and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int J Pharm. 2007;331(2):148–52.

    Article  CAS  PubMed  Google Scholar 

  8. Kohli E, Han HY, Zeman AD, Vinogradov SV. Formulations of biodegradable Nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. J Control Release. 2007;121(1–2):19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saiyed ZM, Gandhi NH, Nair MPNAZT. 5'-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells. J Neuro-Oncol. 2009;15(4):343–7.

    CAS  Google Scholar 

  10. Saiyed ZM, Gandhi NH, Nair MPN. Magnetic nanoformulation of azidothymidine 5'-triphosphate for targeted delivery across the blood-brain barrier. Int J Nanomedicine. 2010;5:157–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vinogradov SV. Polymeric nanogel formulations of nucleoside analogs. Expert Opin Drug Deliv. 2007;4(1):5–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vinogradov SV, Kabanov AV. Synthesis of nanogel carriers for delivery of active phosphorylated nucleoside analogues. Abstr Pap Am Chem Soc. 2004;228:U369-U.

    Google Scholar 

  13. Gerson T, Makarov E, Senanayake TH, Gorantla S, Poluektova LY, Vinogradov SV. Nano-NRTIs demonstrate low neurotoxicity and high antiviral activity against HIV infection in the brain. Nanomedicine. 2014;10(1):177–85.

    Article  CAS  PubMed  Google Scholar 

  14. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9(2):172–8.

    Article  CAS  PubMed  Google Scholar 

  15. Kuppler RJ, Timmons DJ, Fang QR, Li JR, Makal TA, Young MD, et al. Potential applications of metal-organic frameworks. Coord Chem Rev. 2009;253(23–24):3042–66.

    Article  CAS  Google Scholar 

  16. Della Rocca J, Liu DM, Lin WB. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res. 2011;44(10):957–68.

    Article  CAS  PubMed  Google Scholar 

  17. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, et al. Metal-organic frameworks in biomedicine. Chem Rev. 2012;112(2):1232–68.

    Article  CAS  PubMed  Google Scholar 

  18. Simon-Yarza MT, Baati T, Paci A, Lesueur LL, Seck A, Chiper M, et al. Antineoplastic busulfan encapsulated in a metal organic framework nanocarrier: first in vivo results. J Mater Chem B. 2016;4(4):585–8.

    Article  CAS  Google Scholar 

  19. Chalati T, Horcajada P, Couvreur P, Serre C, Ben Yahia M, Maurin G, et al. Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine. 2011;6(10):1683–95.

    Article  CAS  PubMed  Google Scholar 

  20. Horcajada P, Serre C, McKinlay AC, Morris RE. Biomedical applications of metal-organic frameworks. Metal-organic frameworks: applications from catalysis to gas storage 2011. p. 215–50.

  21. Anand R, Borghi F, Manoli F, Manet I, Agostoni V, Reschiglian P, et al. Host-guest interactions in Fe(III)-trimesate MOF nanoparticles loaded with doxorubicin. J Phys Chem B. 2014;118(29):8532–9.

    Article  CAS  PubMed  Google Scholar 

  22. Agostoni V, Anand R, Monti S, Hall S, Maurin G, Horcajada P, et al. Impact of phosphorylation on the encapsulation of nucleoside analogues within porous iron(III) metal-organic framework MIL-100(Fe) nanoparticles. J Mater Chem B. 2013;1(34):4231–42.

    Article  CAS  Google Scholar 

  23. Simon-Yarza T, Giménez-Marqués M, Mrimi R, Mielcarek A, Gref R, Horcajada P, et al. A smart metal-organic framework nanomaterial for lung targeting. Angew Chem Int Ed Engl. 2017;56(49):15565–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Ruiz V, Maksimenko A, Anand R, Monti S, Agostoni V, Couvreur P, et al. Efficient “green” encapsulation of a highly hydrophilic anticancer drug in metal-organic framework nanoparticles. J Drug Target. 2015;23(7–8):759–67.

    Article  CAS  PubMed  Google Scholar 

  25. Horcajada P, Surble S, Serre C, Hong DY, Seo YK, Chang JS, et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun. 2007 (27):2820–2.

  26. Baati T, Njim L, Neffati F, Kerkeni A, Bouttemi M, Gref R, et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(III) metal-organic frameworks. Chem Sci. 2013;4(4):1597–607.

    Article  CAS  Google Scholar 

  27. Brar SK, Verma M. Measurement of nanoparticles by light-scattering techniques. TrAC Trends Anal Chem. 2011;30(1):4–17.

    Article  CAS  Google Scholar 

  28. Kaasalainen M, Aseyev V, von Haartman E, Karaman DŞ, Mäkilä E, Tenhu H, et al. Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res Lett. 2017;12(1):74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giddings JC. Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science. 1993;260(5113):1456.

    Article  CAS  PubMed  Google Scholar 

  30. Contado C. Field flow fractionation techniques to explore the “nano-world”. Anal Bioanal Chem. 2017;409(10):2501–18.

    Article  CAS  PubMed  Google Scholar 

  31. Rigaux G, Gheran CV, Callewaert M, Cadiou C, Voicu SN, Dinischiotu A, et al. Characterization of Gd loaded chitosan-TPP nanohydrogels by a multi-technique approach combining dynamic light scattering (DLS), asymetrical flow-field-flow-fractionation (AF4) and atomic force microscopy (AFM) and design of positive contrast agents for molecular resonance imaging (MRI). Nanotechnology. 2017;28(5):055705.

    Article  CAS  PubMed  Google Scholar 

  32. Schimpf ME, Caldwell K, Giddings JC. Field-flow fractionation handbook. Hoboken: Wiley; 2000.

    Google Scholar 

  33. Wyatt PJ. Light-scattering and the absolute characterization of macromolecules. Anal Chim Acta. 1993;272(1):1–40.

    Article  CAS  Google Scholar 

  34. Thielking H, Roessner D, Kulicke W-M. Online coupling of flow field-flow fractionation and multiangle laser light scattering for the characterization of polystyrene particles. Anal Chem. 1995;67(18):3229–33.

    Article  CAS  Google Scholar 

  35. Wyatt PJ. Submicrometer particle sizing by multiangle light scattering following fractionation. J Colloid Interface Sci. 1998;197(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  36. Reschiglian P, Rambaldi DC, Zattoni A. Flow field-flow fractionation with multiangle light scattering detection for the analysis and characterization of functional nanoparticles. Anal Bioanal Chem. 2011;399(1):197–203.

    Article  CAS  PubMed  Google Scholar 

  37. Zattoni A, Rambaldi DC, Reschiglian P, Melucci M, Krol S, Garcia AMC, et al. Asymmetrical flow field-flow fractionation with multi-angle light scattering detection for the analysis of structured nanoparticles. J Chromatogr A. 2009;1216(52):9106–12.

    Article  CAS  PubMed  Google Scholar 

  38. Marassi V, Roda B, Zattoni A, Tanase M, Reschiglian P. Hollow fiber flow field-flow fractionation and size-exclusion chromatography with MALS detection: a complementary approach in biopharmaceutical industry. J Chromatogr A. 2014;1372C:196–203.

    Article  CAS  PubMed  Google Scholar 

  39. Hupfeld S, Moen HH, Ausbacher D, Haas H, Brandl M. Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: influence of ionic strength and osmotic pressure of the carrier liquid. Chem Phys Lipids. 2010;163(2):141–7.

    Article  CAS  PubMed  Google Scholar 

  40. Kaluderovic GN, Dietrich A, Kommera H, Kuntsche J, Mader K, Mueller T, et al. Liposomes as vehicles for water insoluble platinum-based potential drug: 2-(4-(tetrahydro-2H-pyran-2-yloxy)-undecyl)-propane-1,3-diamminedichloro platinum(II). Eur J Med Chem. 2012;54:567–72.

    Article  CAS  PubMed  Google Scholar 

  41. Kang DY, Kim MJ, Kim ST, Oh KS, Yuk SH, Lee SH. Size characterization of drug-loaded polymeric core/shell nanoparticles using asymmetrical flow field-flow fractionation. Anal Bioanal Chem. 2008;390(8):2183–8.

    Article  CAS  PubMed  Google Scholar 

  42. Gaulding JC, South AB, Lyon LA. Hydrolytically degradable shells on thermoresponsive microgels. Colloid Polym Sci. 2013;291(1):99–107.

    Article  CAS  Google Scholar 

  43. Schadlich A, Caysa H, Mueller T, Tenambergen F, Rose C, Gopferich A, et al. Tumor accumulation of NIR fluorescent PEG PLA nanoparticles: impact of particle size and human xenograft tumor model. ACS Nano. 2011;5(11):8710–20.

    Article  CAS  PubMed  Google Scholar 

  44. Schadlich A, Rose C, Kuntsche J, Caysa H, Mueller T, Gopferich A, et al. How stealthy are PEG-PLA nanoparticles? An NIR in vivo study combined with detailed size measurements. Pharm Res. 2011;28(8):1995–2007.

    Article  CAS  PubMed  Google Scholar 

  45. Shimoda A, Sawada S, Kano A, Maruyama A, Moquin A, Winnik FM, et al. Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery. Colloids Surf B Biointerfaces. 2012;99:38–44.

    Article  CAS  PubMed  Google Scholar 

  46. Ma PL, Buschmann MD, Winnik FM. One-step analysis of DNA/chitosan complexes by field-flow fractionation reveals particle size and free chitosan content. Biomacromolecules. 2010;11(3):549–54.

    Article  CAS  PubMed  Google Scholar 

  47. Augsten C, Mader K. Characterizing molar mass distributions and molecule structures of different chitosans using asymmetrical flow field-flow fractionation combined with multi-angle light scattering. Int J Pharm. 2008;351(1–2):23–30.

    Article  CAS  PubMed  Google Scholar 

  48. Pease LF, Lipin DI, Tsai DH, Zachariah MR, Lua LHL, Tarlov MJ, et al. Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy. Biotechnol Bioeng. 2009;102(3):845–55.

    Article  CAS  PubMed  Google Scholar 

  49. Chuan YP, Fan YY, Lua L, Middelberg APJ. Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnol Bioeng. 2008;99(6):1425–33.

    Article  CAS  PubMed  Google Scholar 

  50. Zillies JC, Zwiorek K, Winter G, Coester C. Method for quantifying the PEGylation of gelatin nanoparticle drug carrier systems using asymmetrical flow field-flow fractionation and refractive index detection. Anal Chem. 2007;79(12):4574–80.

    Article  CAS  PubMed  Google Scholar 

  51. Garcea RL, Gissmann L. Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr Opin Biotechnol. 2004;15(6):513–7.

    Article  CAS  PubMed  Google Scholar 

  52. Fraunhofer W, Winter G, Coester C. Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems. Anal Chem. 2004;76(7):1909–20.

    Article  CAS  PubMed  Google Scholar 

  53. Agostoni V, Horcajada P, Rodriguez-Ruiz V, Willaime H, Couvreur P. Serre C, et al. ‘Green’ fluorine-free mesoporous iron(III) trimesate nanoparticles for drug delivery. Green Mat. 2013;1(4):209–17.

    Article  CAS  Google Scholar 

  54. Marassi V, Roda B, Casolari S, Ortelli S, Blosi M, Zattoni A, et al. Hollow-fiber flow field-flow fractionation and multi-angle light scattering as a new analytical solution for quality control in pharmaceutical nanotechnology. Microchem J. 2018;136:149–56.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Roda.

Ethics declarations

Conflict of interest

Andrea Zattoni, Barbara Roda, and Pierluigi Reschiglian are associates of the academic spinoff company byFlow Srl (Bologna, Italy). The company mission includes know-how transfer, development, and application of novel technologies and methodologies for the analysis and characterization of samples of nanobiotechnological interest. Valentina Marassi, Francesco Borghi, Resmi Anand, Valentina Agostoni, Ruxandra Gref, and Sandra Monti declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roda, B., Marassi, V., Zattoni, A. et al. Flow field-flow fractionation and multi-angle light scattering as a powerful tool for the characterization and stability evaluation of drug-loaded metal–organic framework nanoparticles. Anal Bioanal Chem 410, 5245–5253 (2018). https://doi.org/10.1007/s00216-018-1176-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1176-6

Keywords

Navigation