Skip to main content
Log in

Molecular switch-modulated fluorescent copper nanoclusters for selective and sensitive detection of histidine and cysteine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel assay for histidine and cysteine has been constructed based on modulation of fluorescent copper nanoclusters (CuNCs) by molecular switches. In our previous work, a dumbbell DNA template with a poly-T (thymine) loop has been developed as an excellent template for the formation of strongly fluorescent CuNCs. Herein, for the first time, we established this biosensor for sensing two amino acids by using dumbbell DNA-templated CuNCs as the single probe. Among 20 natural amino acids, only histidine and cysteine can selectively quench fluorescence emission of CuNCs, because of the specific interaction of these compounds with copper ions. Furthermore, by using nickel ions (Ni2+) and N-ethylmaleimide as the masking agents for histidine and cysteine respectively, an integrated logic gate system was designed by coupling with the fluorescent CuNCs and demonstrated selective and sensitive detection of cysteine and histidine. Under optimal conditions, cysteine can be detected in the concentration ranges of 0.01–10.0 μM with the detection limit (DL) of as low as 98 pM, while histidine can be detected in the ranges of 0.05–40.0 μM with DL of 1.6 nM. In addition, histidine and cysteine can be observed with the naked eye under a hand-held UV lamp (DL, 50 nM), which can be easily adapted to automated high-throughput screening. Finally, the strategy has been successfully utilized for biological fluids. The proposed system can be conducted in homogeneous solution, eliminating the need for organic cosolvents, separation processes of nanomaterials, or any chemical modifications. Overall, the assay provides an alternative method for simultaneous detection of cysteine and histidine by taking the advantages of high speed, no label and enzyme requirement, and good sensitivity and specificity, and will satisfy the great demand for determination of amino acids in fields such as food processing, biochemistry, pharmaceuticals, and clinical analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab. 2014;25:558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang SY, Ong CN, Shen HM. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett. 2004;208:143–53.

    Article  CAS  PubMed  Google Scholar 

  3. Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem. 2001;73:5972–8.

    Article  CAS  PubMed  Google Scholar 

  4. Gazit V, Ben-Abraham R, Coleman R, Weizman A, Katz Y. Cysteine-induced hypoglycemic brain damage: an alternative mechanism to excitotoxicity. Amino Acids. 2004;26:163–8.

    Article  CAS  PubMed  Google Scholar 

  5. Watanabe M, Suliman ME, Qureshi AR, Garcia-Lopez E, Bárány P, Heimbürger O, et al. Consequences of low plasma histidine in chronic kidney disease patients: associations with inflammation, oxidative stress, and mortality. Am J Clin Nutr. 2008;87:1860–6.

    Article  CAS  PubMed  Google Scholar 

  6. Leebeek FWG, Kluft C, Knot EAR, Demaat MPM. Histidine-rich glycoprotein is elevated in mild liver-cirrhosis and decreased in moderate and severe liver-cirrhosis. J Lab Clin Med. 1989;113:493–7.

    CAS  PubMed  Google Scholar 

  7. Chen GN, Wu XP, Duan JP, Chen HQ. A study on electrochemistry of histidine and its metabolites based on the diazo coupling reaction. Talanta. 1999;49:319–30.

    Article  Google Scholar 

  8. Li BX, Zhang ZJ, Liu ML, Xu CL. Flow injection chemiluminescence determination of L-cysteine in amino acid mixture and human urine with the BrO(3)(-)-quinine system. Anal Bioanal Chem. 2003;377:1212–6.

    Article  CAS  PubMed  Google Scholar 

  9. Gao C, Fan S. Influence of zone stacking sequences on CL intensity and determination of histidine in sequential injection analysis. Anal Lett. 2008;41:1335–47.

    Article  CAS  Google Scholar 

  10. Wu J, Xu K, Landers JP, Weber SG. An in situ measurement of extracellular cysteamine, homocysteine, and cysteine concentrations in organotypic hippocampal slice cultures by integration of electroosmotic sampling and microfluidic analysis. Anal Chem. 2013;85:3095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiao Q, Gao H, Yuan Q, Lu C, Lin JM. High-performance liquid chromatography assay of cysteine and homocysteine using fluorosurfactant-functionalized gold nanoparticles as postcolumn resonance light scattering reagents. J Chromatogr A. 2013;1274:145–50.

    Article  CAS  PubMed  Google Scholar 

  12. Barbaro E, Zangrando R, Vecchiato M, Turetta C, Barbante C, Gambaro A. D- and L-amino acids in Antarctic lakes: assessment of a very sensitive HPLC-MS method. Anal Bioanal Chem. 2014;406:5259–70.

    Article  CAS  PubMed  Google Scholar 

  13. Possari R, Carvalhal RF, Mendes RK, Kubota LT. Electrochemical detection of cysteine in a flow system based on reductive desorption of thiols from gold. Anal Chim Acta. 2006;575:172–9.

    Article  CAS  PubMed  Google Scholar 

  14. Feng L, Wu L, Xing F, Hu L, Ren J, Qu X. Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols. Biosens Bioelectron. 2017;98:378–85.

    Article  CAS  PubMed  Google Scholar 

  15. Chen ZG, Liu JB, Han YL, Zhu L. A novel histidine assay using tetraphenylporphyrin manganese (III) chloride as a molecular recognition probe by resonance light scattering technique. Anal Chim Acta. 2006;570:109–15.

    Article  CAS  Google Scholar 

  16. Hu Y, Wang Q, Zheng C, Wu L, Hou X, Lv Y. Recyclable decoration of amine-functionalized magnetic nanoparticles with Ni2+ for determination of histidine by photochemical vapor generation atomic spectrometry. Anal Chem. 2014;86:842–8.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Yang RH, Liu F, Li KA. Fluorescent sensor for imidazole derivatives based on monomer-dimer equilibrium of a zinc porphyrin complex in a polymeric film. Anal Chem. 2004;76:7336–45.

    Article  CAS  PubMed  Google Scholar 

  18. Shao N, Jin JY, Cheung SM, Yang RH, Chan WH, Mo T. A spiropyran-based ensemble for visual recognition and quantification of cysteine and homocysteine at physiological levels. Angew Chem Int Ed. 2006;45:4944–8.

    Article  CAS  Google Scholar 

  19. Sun SK, Tu KX, Yan XP. An indicator-displacement assay for naked-eye detection and quantification of histidine in human urine. Analyst. 2012;137:2124–8.

    Article  CAS  PubMed  Google Scholar 

  20. Chen S, Tian J, Jiang Y, Zhao Y, Zhang J, Zhao S. A one-step selective fluorescence turn-on detection of cysteine and homocysteine based on a facile CdTe/CdS quantum dots-phenanthroline system. Anal Chim Acta. 2013;787:181–8.

    Article  CAS  PubMed  Google Scholar 

  21. Liu YR, Hu R, Liu T, Zhang XB, Tan W, Shen GL, et al. Label-free dsDNA-Cu NPs-based fluorescent probe for highly sensitive detection of L-histidine. Talanta. 2013;107:402–7.

    Article  CAS  PubMed  Google Scholar 

  22. Shi F, Liu S, Su X. Dopamine functionalized-CdTe quantum dots as fluorescence probes for L-histidine detection in biological fluids. Talanta. 2014;125:221–6.

    Article  CAS  PubMed  Google Scholar 

  23. Bian W, Wang F, Wei Y, Wang L, Liu Q, Dong W, et al. Doped zinc sulfide quantum dots based phosphorescence turn-off/on probe for detecting histidine in biological fluid. Anal Chim Acta. 2015;856:82–9.

    Article  CAS  PubMed  Google Scholar 

  24. Chen X, Gong F, Cao Z, Zou W, Gu T. Highly cysteine-selective fluorescent nanoprobes based on ultrabright and directly synthesized carbon quantum dots. Anal Bioanal Chem. https://doi.org/10.1007/s00216-018-0980-3.

  25. Zhang Y, Jiang J, Li M, Gao P, Zhou Y, Zhang G, et al. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles. Talanta. 2016;161:520–7.

    Article  CAS  PubMed  Google Scholar 

  26. Yu Y, Yang J, Xu X, Jiang Y, Wang B. A novel fluorescent probe for highly sensitive and selective detection of cysteine and its application in cell imaging. Sensors Actuators B Chem. 2017;251:902–8.

    Article  CAS  Google Scholar 

  27. Miao Q, Li Q, Yuan Q, Li L, Hai Z, Liu S, et al. Discriminative fluorescence sensing of biothiols in vitro and in living cells. Anal Chem. 2015;87:3460–6.

    Article  CAS  PubMed  Google Scholar 

  28. Pu F, Huang Z, Ren J, Qu X. DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. Anal Chem. 2010;82:8211–6.

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Liu J, Fang Y, Qin Y, Xu S, Liu Y, et al. G-quadruplex-based ultrasensitive and selective detection of histidine and cysteine. Biosens Bioelectron. 2013;41:563–8.

    Article  CAS  PubMed  Google Scholar 

  30. Sun J, Yang F, Zhao D, Chen CX, Yang XR. Integrated logic gate for fluorescence turn-on detection of histidine and cysteine based on Ag/Au bimetallic nanoclusters-Cu2+ ensemble. ACS Appl Mater Interfaces. 2015;7:6860–6.

    Article  CAS  PubMed  Google Scholar 

  31. Wu C, Fan D, Zhou C, Liu Y, Wang E. Colorimetric strategy for highly sensitive and selective simultaneous detection of histidine and cysteine based on G-quadruplex-Cu(II) metalloenzyme. Anal Chem. 2016;88:2899–903.

    Article  CAS  PubMed  Google Scholar 

  32. Xue SF, Lu LF, Wang QX, Zhang S, Zhang M, Shi G. An integrated logic system for time-resolved fluorescent “turn-on” detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble. Talanta. 2016;158:208–13.

    Article  CAS  PubMed  Google Scholar 

  33. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution. Science. 2007;318:430–3.

    Article  CAS  PubMed  Google Scholar 

  34. Tao Y, Li M, Ren J, Qu X. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev. 2015;44:8636–63.

    Article  CAS  PubMed  Google Scholar 

  35. Liu J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. Trac-Trends Anal Chem. 2014;58:99–111.

    Article  CAS  Google Scholar 

  36. Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem Int Ed. 2010;49:5665–7.

    Article  CAS  Google Scholar 

  37. Qing Z, He X, He D, Wang K, Xu F, Qing T, et al. Poly (thymine)-templated selective formation of fluorescent copper nanoparticles. Angew Chem Int Ed. 2013;52:9719–22.

    Article  CAS  Google Scholar 

  38. Wang Y, Cui H, Cao Z, Lau C, Lu J. Additive and enhanced fluorescence effects of hairpin DNA template-based copper nanoparticles and their application for the detection of NAD(+). Talanta. 2016;154:574–80.

    Article  CAS  PubMed  Google Scholar 

  39. Wang B, Gao Y, Li HW, Hu ZP, Wu Y. The switch-on luminescence sensing of histidine-rich proteins in solution: a further application of a Cu2+ ligand. Org Biomol Chem. 2011;9:4032–4.

    Article  CAS  PubMed  Google Scholar 

  40. Liu S, Shi F, Chen L, Su X. Tyrosine-functionalized CuInS2 quantum dots as a fluorescence probe for the determination of biothiols. Analyst. 2013;138:5819–25.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou Y, Zhou TS, Zhang M, Shi GY. A DNA-scaffolded silver nanocluster/Cu2+ ensemble as a turn-on fluorescent probe for histidine. Analyst. 2014;139:3122–6.

    Article  CAS  PubMed  Google Scholar 

  42. Qiu SY, Miao M, Wang TX, Lin ZY, Guo LH, Qiu B, et al. A fluorescent probe for detection of histidine in cellular homogenate and ovalbumin based on the strategy of click chemistry. Biosens Bioelectron. 2013;42:332–6.

    Article  CAS  PubMed  Google Scholar 

  43. Huang ZZ, Pu F, Lin YH, Ren JS, Qu XG. Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. Chem Commun. 2011;47:3487–9.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the National Natural Science Foundation of China (No. 21505023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijuan Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human participation and rights

This study was approved by the Institutional Review Board at Fudan University, and the experiments were performed in accordance with the ethical standards.

Informed consent

The authors declare that urine samples were collected at the Fudan University and obtained with informed consent.

Electronic supplementary material

ESM 1

(PDF 616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z., Cao, Z. Molecular switch-modulated fluorescent copper nanoclusters for selective and sensitive detection of histidine and cysteine. Anal Bioanal Chem 410, 4991–4999 (2018). https://doi.org/10.1007/s00216-018-1149-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1149-9

Keywords

Navigation