Skip to main content
Log in

Visual colorimetric detection of tin(II) and nitrite using a molybdenum oxide nanomaterial-based three-input logic gate

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report a molybdenum oxide (MoO3) nanomaterial-based three-input logic gate that uses Sn2+, NO2, and H+ ions as inputs. Under acidic conditions, Sn2+ is able to reduce MoO3 nanosheets, generating oxygen-vacancy-rich MoO3−x nanomaterials along with strong localized surface plasmon resonance (LSPR) and an intense blue solution as the output signal. When NO2 is introduced, the redox reaction between the MoO3 nanosheets and Sn2+ is strongly inhibited because the NO2 consumes both H+ and Sn2+. The three-input logic gate was employed for the visual colorimetric detection of Sn2+ and NO2 under different input states. The colorimetric assay’s limit of detection for Sn2+ and the lowest concentration of NO2 detectable by the assay were found to be 27.5 nM and 0.1 μM, respectively. The assay permits the visual detection of Sn2+ and NO2 down to concentrations as low as 2 μM and 25 μM, respectively. The applicability of the logic-gate-based colorimetric assay was demonstrated by using it to detect Sn2+ and NO2 in several water sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1a–d
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng L, Yu H, Yue Y, Wu F, He Y. Visual chronometric assay for chromium(III) ions based on the Cu2O nanocube-mediated clock reaction. ACS Appl Mater Interfaces. 2017;9:11798–802.

  2. Jalloh MA, Chen J, Zhen F, Zhang G. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. J Hazard Mater. 2009;162:1081–5.

  3. Vilela D, Parmar J, Zeng Y, Zhao Y, Sánchez S. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 2016;16(4):2860–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adhikari S, Ghosh A, Guria S, Sahana A. A through bond energy transfer based ratiometric probe for fluorescent imaging of Sn2+ ions in living cells. RSC Adv. 2016;6:39657–62.

    Article  CAS  Google Scholar 

  5. Wang J, Zhou H, Fan D, Zhao D, Xu C. A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Microchim Acta. 2015;182:1055–61.

    Article  CAS  Google Scholar 

  6. Jayawardane BM, Wei S, McKelvie ID, Kolev SD. Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal Chem. 2014;86:7274–9.

    Article  CAS  PubMed  Google Scholar 

  7. Noor NSM, Tan LL, Heng LY, Chong KF, Tajuddin SN. Acrylic microspheres-based optosensor for visual detection of nitrite. Food Chem. 2016;207:132–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ulusoy S, Ulusoy HI, Akçay M, Gürkan R. Inexpensive and versatile method for trace Sn(II) and Sn(IV) ions in food samples by CPE/FAAS. Food Chem. 2012;134:419–26.

  9. Bharath G, Madhu R, Chen S-M, Veeramani V, Mangalaraj D, Ponpandian N. Solvent-free mechanochemical synthesis of graphene oxide and Fe3O4-reduced graphene oxide nanocomposites for sensitive detection of nitrite. J Mater Chem A. 2015;3:15529–39.

  10. Haldorai Y, Hwang S-K, Gopalan A-I, Huh YS, Han Y-K, Voit W, et al. Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor. Biosens Bioelectron. 2016;79:543–52.

    Article  CAS  PubMed  Google Scholar 

  11. Lan H, Wen Y, Shi Y, Liu K, Mao Y, Yi T. Fluorescence turn-on detection of Sn2+ in live eukaryotic and prokaryotic cells. Analyst. 2014;139:5223–9.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng X-J, Liang R-P, Li Z-J, Zhang L, Qiu J-D. One-step, stabilizer-free and green synthesis of Cu nanoclusters as fluorescent probes for sensitive and selective detection of nitrite ions. Sensors Actuators B Chem. 2016;230:314–9.

  13. Huang W, Xie Z, Deng Y, He Y. 3,3′,5,5′-Tetramethylbenzidine-based quadruple-channel visual colorimetric sensor array for highly sensitive discrimination of serum antioxidants. Sensors Actuators B Chem. 2018;254:1057–60.

  14. Li R, An H, Huang W, He Y. Molybdenum oxide nanosheets meet ascorbic acid: tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sensors Actuators B Chem. 2018;259:59–63.

  15. Huang W, Deng Y, He Y. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosens Bioelectron. 2017;91:89–94.

    Article  CAS  PubMed  Google Scholar 

  16. Yu H, Long D, Huang W. Organic antifreeze discrimination by pattern recognition using nanoparticle array. Sensors Actuators B Chem. 2018;264:164–8.

    Article  CAS  Google Scholar 

  17. Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112:2739–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang W, Zhou Y, Du J, Deng Y, He Y. Versatile visual logic operations based on plasmonic switching in label-free molybdenum oxide nanomaterials. Anal Chem. 2018;90:2384–8.

  19. Huang W, Zhou Y, Deng Y, He Y. A negative feedback loop based on proton-driven in situ formation of plasmonic molybdenum oxide nanosheets. Phys Chem Chem Phys. 2018;20:4347–50.

    Article  CAS  PubMed  Google Scholar 

  20. Jans H, Huo Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev. 2012;41:2849–66.

    Article  CAS  PubMed  Google Scholar 

  21. Daniel WL, Han MS, Lee J-S, Mirkin CA. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc. 2009;131:6362–3.

    Article  CAS  PubMed  Google Scholar 

  22. Nisar U, Muhammad M, Ibrahim K, Ahsanulhaq Q. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. Trends Anal Chem. 2018;100:155–66.

  23. Liu X, Wu Z, Zhang Q, Zhao W, Zong C, Gai H. Single gold nanoparticle-based colorimetric detection of picomolar mercury ion with dark-field microscopy. Anal Chem. 2018;88:2119–24.

  24. Chen M, Yu Z, Liu D, Peng T, Liu K, Wang S, et al. Dual gold nanoparticle lateflow immunoassay for sensitive detection of Escherichia coli O157: H7. Anal Chim Acta. 2015;876:71–6.

  25. Zhang L, Huang Y, Wang J, Rong Y, Lai W, Zhang J, et al. Hierarchical flowerlike gold nanoparticles labeled immunochromatography test strip for highly sensitive detection of Escherichia coli O157:H7. Langmuir. 2015;31:5537–44.

  26. Lin Y, Xu C, Ren J, Qu X. Using thermally regenerable cerium oxide nanoparticles in biocomputing to perform label-free, resettable, and colorimetric logic operations. Angew Chem Int Ed. 2012;51:12579–83.

  27. Du J, Yin S, Jiang L, Ma B, Chen X. A colorimetric logic gate based on free gold nanoparticles and the coordination strategy between melamine and mercury ions. Chem Commun. 2013;49:4196–8.

    Article  CAS  Google Scholar 

  28. Liu D, Chen W, Sun K, Deng K, Zhang W, Wang Z, et al. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew Chem Int Ed. 2011;50:4103–7.

    Article  CAS  Google Scholar 

  29. Wang Y, Zhang X, Luo Z, Huang X, Tan C, Li H, et al. Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nano. 2014;6:12340–4.

    CAS  Google Scholar 

  30. Huang Q, Hu S, Zhuang J, Wang X. MoO3–x-based hybrids with tunable localized surface plasmon resonances: chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chem Eur J. 2012;18:15283–7.

  31. Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita H. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Adv Mater. 2015;27:4616–21.

  32. Arvand M, Moghimi AM, Afshari A, Mahmoodi N. Potentiometric membrane sensor based on 6-(4-nitrophenyl)-2,4-diphenyl-3,5-diaza-bicyclo[3.1.0]hex-2-ene for detection of Sn(II) in real samples. Anal Chim Acta. 2006;579:102–8.

  33. Zhang Y, Su Z, Li B, Zhang L, Fan D, Ma H. Recyclable magnetic mesoporous nanocomposite with improved sensing performance toward nitrite. ACS Appl Mater Interfaces. 2016;8:12344–51.

    Article  CAS  PubMed  Google Scholar 

  34. Bijad M, Karimi-Maleh H, Farsi M, Shahidi S-A. Simultaneous determination of amaranth and nitrite in foodstuffs via electrochemical sensor based on carbon paste electrode modified with CuO/SWCNTs and room temperature ionic liquid. Food Anal Methods. 2017;10:1–8.

  35. Chen J, Pang S, He L, Nugen SR. Highly sensitive and selective detection of nitrite ions using Fe3O4@ SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy. Biosens Bioelectron. 2016;85:726–33.

Download references

Acknowledgements

The support of this research by the National Natural Science Foundation of China (grant no. 21705134) and the Longshan Scholars Programme of Southwest University of Science and Technology (grant no. 17LZX449) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest related to the work presented in this manuscript.

Electronic supplementary material

ESM 1

(PDF 608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Zhao, M., Huang, W. et al. Visual colorimetric detection of tin(II) and nitrite using a molybdenum oxide nanomaterial-based three-input logic gate. Anal Bioanal Chem 410, 4519–4526 (2018). https://doi.org/10.1007/s00216-018-1109-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1109-4

Keywords

Navigation