Skip to main content

Advertisement

Log in

Current status of water environment and their microbial biosensor techniques – Part II: Recent trends in microbial biosensor development

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies.

Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BL:

Bioluminescence

BOD:

Biochemical oxygen demand

C. albicans :

Candida albicans

C. butyricum :

Clostridium butyricum

C. violaceum :

Chromobacterium violaceum

CL:

Chemiluminescence

CNT:

Carbon nanotube

COD:

Chemical oxygen demand

DCIP:

2,6-Dichlorophenolindophenol

DM:

Double mediator

DO:

Dissolved oxygen

DOM:

Dissolved organic matter

E. coli :

Escherichia coli

FCN:

Ferricyanide

FIA:

Flow injection analysis

FL:

Fluorescence

GFP:

Green fluorescent protein

LASs:

Linear alkylbenzene sulfonates

M. aeruginosa :

Microcystis aeruginosa

MDC:

Microbial desalination cell

MEMS:

Microelectromechanical system

MFC:

Microbial fuel cell

MWCNT:

Multiwall carbon nanotube

N:

Nitrogen

NP:

Nonylphenol

P:

Phosphorus

P. agardhii :

Planktothrix agardhii

P. aeruginosa :

Pseudomonas aeruginosa

P. fluorescens :

Pseudomonas fluorescens

RCI:

Redox color indicator

S. cerevisiae :

Saccharomyces cerevisiae

SM:

Single mediator

SOM:

Sediment organic matter

TN:

Total nitrogen

T. cutaneum :

Trichosporon cutaneum

TP:

Total phosphorus

References

  1. Updike SJ, Hicks GP. The enzyme electrode. Nature. 1967;214:986–8. https://doi.org/10.1038/214986a0.

    Article  CAS  PubMed  Google Scholar 

  2. Scheller FW, Wollenberger U, Warsinke A, Lisdat F. Research and development in biosensors. Curr Opin Biotechnol. 2001;12:35–40. https://doi.org/10.1016/S0958-1669(00)00169-5.

    Article  CAS  PubMed  Google Scholar 

  3. Nakamura H, Karube I. Current research activity in biosensors. Anal Bioanal Chem. 2003;377:446–68. https://doi.org/10.1007/s00216-003-1947-5.

    Article  CAS  PubMed  Google Scholar 

  4. Lee TMH. Over-the-counter biosensors: past, present, and future. Sensors. 2008;8:5535–59. https://doi.org/10.3390/s8095535.

    Article  CAS  PubMed  Google Scholar 

  5. Goode JA, Rushworth JVH, Millner PA. Biosensor regeneration: a review of common techniques and outcomes. Langmuir. 2014;31:6267–76. https://doi.org/10.1021/la503533g.

    Article  CAS  PubMed  Google Scholar 

  6. Scheller FW, Yarman A, Bachmann T, Hirsch T, Kubick S, Renneberg R, et al. Future of biosensors: a personal view. Adv Biochem Eng Biotechnol. 2014;140:1–28. https://doi.org/10.1007/10_2013_251.

    Article  CAS  PubMed  Google Scholar 

  7. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications – an overview. Front Bioeng Biotechnol. 2016;4:11. https://doi.org/10.3389/fbioe.2016.00011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Turner APF. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42:3184–96. https://doi.org/10.1039/C3CS35528D.

    Article  CAS  PubMed  Google Scholar 

  9. Gruhl FJ, Rapp BE, Lange K. Biosensors for diagnostic applications. Adv Biochem Eng Biotechnol. 2013;133:115–48. https://doi.org/10.1007/10_2011_130.

    Article  CAS  PubMed  Google Scholar 

  10. Gonchar M, Smutok O, Karkovska M, Stasyuk N, Gayda G. Yeast-based biosensors for clinical diagnostics and food control. In: Sibirny AA, editor. Biotechnology of yeasts and filamentous fungi. Berlin: Springer; 2017. p. 391–412.

    Chapter  Google Scholar 

  11. Thakur MS, Ragavan KV. Biosensors in food processing. J Food Sci Technol. 2013;50:625–41. https://doi.org/10.1007/s13197-012-0783-z.

    Article  CAS  PubMed  Google Scholar 

  12. Dorst BV, Mehta J, Bekaert K, Rouah-Martin E, Coen WD, Dubruel P, et al. Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron. 2010;26:1178–94. https://doi.org/10.1016/j.bios.2010.07.033.

    Article  CAS  PubMed  Google Scholar 

  13. Rogers KR. Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta. 2006;568:222–31. https://doi.org/10.1016/j.aca.2005.12.067.

    Article  CAS  PubMed  Google Scholar 

  14. Bahadır EB, Sezgintürk MK. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal Biochem. 2015;478:107–20. https://doi.org/10.1016/j.ab.2015.03.011.

    Article  CAS  PubMed  Google Scholar 

  15. Karube I, Matsunaga T, Mitsuda S, Suzuki S. Microbial electrode BOD sensor. Biotechnol Bioeng. 1977;19:1535–47. https://doi.org/10.1002/bit.260191010.

    Article  CAS  PubMed  Google Scholar 

  16. Thouand G. Microorganisms for analysis. Anal Bioanal Chem. 2011;400:893–4. https://doi.org/10.1007/s00216-011-4843-4.

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura H, Karube I. Microbial Biosensors. In: Grimes CA, Pishko DV, Pishko MV, editors. Encyclopedia of sensors, vol. 6. California: American Scientific Publishers; 2005. p. 87–126. http://www.aspbs.com/eos/.

    Google Scholar 

  18. Nakamura H, Shimomura-Shimizu M, Karube I. Development of microbial sensors and their application. Adv Biochem Eng Biotechnol. 2008;109:351–94. https://doi.org/10.1007/978-3-540-75201-1.

    Article  CAS  PubMed  Google Scholar 

  19. D’Souza SF. Microbial biosensors. Biosens Bioelectron. 2001;16:337–53. https://doi.org/10.1016/S0956-5663(01)00125-7.

    Article  PubMed  Google Scholar 

  20. Lei Y, Chen W, Mulchandani A. Microbial biosensors. Anal Chim Acta. 2006;568:200–10. https://doi.org/10.1016/j.aca.2005.11.065.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura H. Recent organic pollution and its biosensing methods. Anal Methods. 2010;2:430–44. https://doi.org/10.1039/b9ay00315k.

    Article  CAS  Google Scholar 

  22. Su L, Jia W, Hou C, Lei Y. Microbial biosensors: a review. Biosens Bioelectron. 2011;26:1788–99. https://doi.org/10.1016/j.bios.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  23. Eltzov E, Marks RS. Whole-cell aquatic biosensors. Anal Bioanal Chem. 2011;400:895–913. https://doi.org/10.1007/s00216-010-4084-y.

    Article  CAS  PubMed  Google Scholar 

  24. Abrevaya XC, Sacco NJ, Bonetto MC, Hilding-Ohlsson A, Cortón E. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand. Biosens Bioelectron. 2015;63:580–90. https://doi.org/10.1016/j.bios.2014.04.034.

    Article  CAS  PubMed  Google Scholar 

  25. Abrevaya XC, Sacco NJ, Bonetto MC, Hilding-Ohlsson A, Cortón E. Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection, and other uses. Biosens Bioelectron. 2015;63:591–601. https://doi.org/10.1016/j.bios.2014.04.053.

    Article  CAS  PubMed  Google Scholar 

  26. Yang H, Zhou M, Liu M, Yang W, Gu T. Microbial fuel cells for biosensor applications. Biotechnol Lett. 2015;37:2357–64. https://doi.org/10.1007/s10529-015-1929-7.

    Article  CAS  PubMed  Google Scholar 

  27. Hikuma M, Suzuki H, Yasuda T, Karube I, Suzuki S. Amperometric estimation of BOD by using living immobilized yeasts. Eur J Appl Microbiol Biotechnol. 1979;8:289–97. https://doi.org/10.1007/BF00508793.

    Article  CAS  Google Scholar 

  28. Adeniran A, Sherer M, Tyo KEJ. Yeast-based biosensors: design and applications. FEMS Yeast Res. 2015;15:1–15. https://doi.org/10.1111/1567-1364.12203.

    Article  CAS  PubMed  Google Scholar 

  29. Jarque S, Bittner M, Blaha L, Hilscherova K. Yeast biosensors for detection of environmental pollutants: current state and limitations. Trends Biotechnol. 2016;34:408–19. https://doi.org/10.1016/j.tibtech.2016.01.007.

    Article  CAS  PubMed  Google Scholar 

  30. Pasco N, Baronian KHR, Jeffries C, Hay J. Biochemical mediator demand – a novel rapid alternative for measuring biochemical oxygen demand. Appl Microbiol Biotechnol. 2000;53:613–8. https://doi.org/10.1007/s002530051.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshida N, Yano K, Morita T, McNiven SJ, Nakamura H, Karube I. A mediator-type biosensor as a new approach to biochemical oxygen demand estimation. Analyst. 2000;125:2280–4. https://doi.org/10.1039/b005995l.

    Article  CAS  PubMed  Google Scholar 

  32. O’Reilly JE. Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim Biophys Acta Bioenerg. 1973;292:509–15. https://doi.org/10.1016/0005-2728(73)90001-7.

    Article  Google Scholar 

  33. Yoshida N, Hoashi J, Morita T, McNiven SJ, Yano K, Yoshida A, et al. Monitoring of composting process using a mediator-type biochemical oxygen demand sensor. Analyst. 2001;126:1751–5. https://doi.org/10.1039/B103215C.

    Article  CAS  Google Scholar 

  34. Yoshida N, Hoashi J, Morita T, McNiven SJ, Nakamura H, Karube I. Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. J Biotechnol. 2001;88:269–75. https://doi.org/10.1016/S0168-1656(01)00282-6.

    Article  CAS  PubMed  Google Scholar 

  35. Yashiki Y, Yamashoji S. Extracellular reduction of menadione and ferricyanide in yeast cell suspension. J Ferment Bioeng. 1996;82:319–21. https://doi.org/10.1016/0922-338X(96)88828-3.

    Article  CAS  Google Scholar 

  36. Baronian KHR, Downard AJ, Lowen RK, Pasco N. Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method. Appl Microbiol Biotechnol. 2002;60:108–13. https://doi.org/10.1007/s00253-002-1108-3.

    Article  CAS  PubMed  Google Scholar 

  37. Yamashoji S, Yoshikawa N, Kirihara M, Tsuneyoshi T. Screening test for rapid food safety evaluation by menadione-catalysed chemiluminescent assay. Food Chem. 2013;138:2146–51. https://doi.org/10.1016/j.foodchem.2012.12.037.

    Article  CAS  PubMed  Google Scholar 

  38. Yamashoji S. Synergistic reduction of toluylene blue induced by acetaldehyde and menadione in yeast cell suspension: application to determination of yeast cell activity. Biochem Biophys Rep. 2017;9:335–40. https://doi.org/10.1016/j.bbrep.2017.01.015.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chelikani V, Rawson FJ, Downard AJ, Gooneratne R, Kunze G, Pasco N, et al. Electrochemical detection of oestrogen binding protein interaction with estrogen in Candida albicans cell lysate. Biosens Bioelectron. 2011;26:3737–41. https://doi.org/10.1016/j.bios.2011.01.016.

    Article  CAS  PubMed  Google Scholar 

  40. Chelikani V, Downard AJ, Kunze G, Gooneratne R, Pasco N, Baronian KHR. Investigating yeast cell responses to oestrogen by electrochemical detection. Electrochim Acta. 2012;73:136–40. https://doi.org/10.1016/j.electacta.2011.11.078.

    Article  CAS  Google Scholar 

  41. Vijayan V, Giersberg M, Chamas A, Mehrotra M, Chelikani V, Kunze G, et al. Use of recombinant estrogen binding protein for the electrochemical detection of oestrogen. Biosens Bioelectron. 2015;66:379–84. https://doi.org/10.1016/j.bios.2014.11.043.

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura H, Suzuki K, Ishikuro H, Kinoshita S, Koizumi R, Okuma S, et al. A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta. 2007;72:210–6. https://doi.org/10.1016/j.talanta.2006.10.019.

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura H, Suzuki K, Okuma S, Yataka M, Mogi Y, Karube I. Improvement of double mediator system for BOD determination. Res Rev ElectroChem. 2008;1:21–5.

    CAS  Google Scholar 

  44. Nakamura H, Tanaka R, Suzuki K, Yataka M, Mogi Y. A direct determination method for ethanol concentrations in alcoholic beverages employing a eukaryote double-mediator system. Food Chem. 2009;117:509–13. https://doi.org/10.1016/j.foodchem.2009.04.026.

    Article  CAS  Google Scholar 

  45. Pasco NF, Weld RJ, Hay JM, Gooneratne R. Development and applications of whole cell biosensors for ecotoxicity testing. Anal Bioanal Chem. 2011;400:931–45. https://doi.org/10.1007/s00216-011-4663-6.

    Article  CAS  PubMed  Google Scholar 

  46. Lagarde F, Jaffrezic-Renault N. Cell-based electrochemical biosensors for water quality assessment. Anal Bioanal Chem. 2011;40:947–64. https://doi.org/10.1007/s00216-011-4816-7.

    Article  CAS  Google Scholar 

  47. Nakamura H, Abe Y, Koizumi R, Suzuki K, Mogi Y, Hirayama T, et al. A chemiluminescence biochemical oxygen demand measuring method. Anal Chim Acta. 2007;602:94–100. https://doi.org/10.1016/j.aca.2007.08.050.

    Article  CAS  PubMed  Google Scholar 

  48. Nakamura H, Hasegawa M, Nomura Y, Arikawa Y, Matsukawa R, Ikebukuro K, et al. Development of a highly sensitive chemiluminescence flow-injection analysis sensor for phosphate-ion detection using maltose phosphorylase. J Biotechnol. 1999;75:127–33. https://doi.org/10.1016/S0168-1656(99)00150-9.

    Article  CAS  Google Scholar 

  49. Nakamura H, Tanaka H, Hasegawa M, Masuda Y, Arikawa Y, Nomura Y, et al. An automatic flow-injection analysis system for determining phosphate ion in river water using pyruvate oxidase G (from Aerococcus viridans). Talanta. 1999;50:799–807. https://doi.org/10.1016/S0039-9140(99)00137-X.

    Article  CAS  PubMed  Google Scholar 

  50. Nakamura H, Yamazaki R, Shirai T, Sano H, Nakami Y, Ikebukuro K, et al. Development of an enzymatic flow-injection chemiluminescence system for determining inorganic pyrophosphate ion. Anal Chim Acta. 2004;518:45–9. https://doi.org/10.1016/j.aca.2004.05.057.

    Article  CAS  Google Scholar 

  51. Li J, Yu Y, Wang Y, Qian J, Zhi J. The benzoquinone-mediated electrochemical microbial biosensor for water biotoxicity assay. Electrochim Acta. 2013;97:52–7. https://doi.org/10.1016/j.electacta.2013.02.071.

    Article  CAS  Google Scholar 

  52. Gao G, Qian J, Fang D, Yu Y, Zhi J. Development of a mediated whole cell-based electrochemical biosensor for joint toxicity assessment of multi-pollutants using a mixed microbial consortium. Anal Chim Acta. 2016;924:21–8. https://doi.org/10.1016/j.aca.2016.04.011.

    Article  CAS  PubMed  Google Scholar 

  53. Khor BH, Ismail AK, Ahamad R, Shahir S. A redox mediated UME biosensor using immobilized Chromobacterium violaceum strain R1 for rapid biochemical oxygen demand measurement. Electrochim Acta. 2015;176:777–83. https://doi.org/10.1016/j.electacta.2015.07.089.

    Article  CAS  Google Scholar 

  54. Hassan RY, Bilitewski U. A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol. Anal Biochem. 2011;419:26–32. https://doi.org/10.1016/j.ab.2011.07.025.

    Article  CAS  PubMed  Google Scholar 

  55. Hassan RY, Bilitewski U. Direct electrochemical determination of Candida albicans activity. Biosens Bioelectron. 2013;49:192–8. https://doi.org/10.1016/j.bios.2013.05.015.

    Article  CAS  PubMed  Google Scholar 

  56. Demirkol DO, Timur S. Chitosan matrices modified with carbon nanotubes for use in mediated microbial biosensing. Microchim Acta. 2011;173:537–42. https://doi.org/10.1007/s00604-011-0596-1.

    Article  CAS  Google Scholar 

  57. Šefčovičová J, Filip J, Gemeiner P, Vikartovská A, Tkac J. High performance microbial 3-D bionanocomposite as a bioanode for a mediated biosensor device. Electrochem Commun. 2011;13:966–8. https://doi.org/10.1016/j.elecom.2011.06.013.

    Article  CAS  Google Scholar 

  58. Hassan RYA, Wollenberger U. Mediated bioelectrochemical system for biosensing the cell viability of Staphylococcus aureus. Anal Bioanal Chem. 2016;408:579–87. https://doi.org/10.1007/s00216-015-9134-z.

    Article  CAS  PubMed  Google Scholar 

  59. Hassan RYA, Hassan HNA, Abdel-Aziz MS, Khaled E. Nanomaterials-based microbial sensor for direct electrochemical detection of Streptomyces Spp. Sensors Actuators B Chem. 2014;203:848–53. https://doi.org/10.1016/j.snb.2014.07.059.

    Article  CAS  Google Scholar 

  60. Sedki M, Hassan RYA, Hefnawy A, El-Sherbiny IM. Sensing of bacterial cell viability using nanostructured bioelectrochemical system: rGO-hyperbranched chitosan nanocomposite as a novel microbial sensor platform. Sensors Actuators B Chem. 2017;252:191–200. https://doi.org/10.1016/j.snb.2017.05.163.

    Article  CAS  Google Scholar 

  61. Kang YO, Choi SH, Gopalan A, Lee KP, Kang HD, Song YS. One pot synthesis of a few nanocomposites with poly(N-vinylcarbazole) and CdS, Ag, Pd50-Ag50, and Pt50-Ru50 nanoparticles using γ-irradiation. J Appl Polym Sci. 2006;100:1809–15. https://doi.org/10.1002/app.23078.

    Article  CAS  Google Scholar 

  62. Kim SK, Kwen HD, Choi SH. Fabrication of a microbial biosensor based on QD-MWNT supports by a one-step radiation reaction and detection of phenolic compounds in red wines. Sensors. 2011;11:2001–12. https://doi.org/10.3390/s110202001.

    Article  CAS  PubMed  Google Scholar 

  63. Anu Prathap MU, Chaurasia AK, Sawant SN, Apte SK. Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane. Anal Chem. 2012;84:6672–8. https://doi.org/10.1021/ac301077d.

    Article  CAS  PubMed  Google Scholar 

  64. Mittal SK, Singh J, Kumar SK. Chlorella modified glassy carbon electrode as whole cell microbial sensor for heavy metal ions. Curr Anal Chem. 2012;8:365–72. https://doi.org/10.2174/157341112801264932.

    Article  CAS  Google Scholar 

  65. Nakamura H, Kobayashi S, Hirata Y, Suzuki K, Mogi Y, Karube I. A spectrophotometric biochemical oxygen demand determination method using 2,6-dichlorophenolindophenol as the redox color indicator and the eukaryote Saccharomyces cerevisiae. Anal Biochem. 2007;369:168–74. https://doi.org/10.1016/j.ab.2007.06.040.

    Article  CAS  PubMed  Google Scholar 

  66. Yoshida N, McNiven SJ, Morita T, Nakamura H, Karube I. A simple, multiple simultaneous spectrophotometric method for BOD determination using DCIP as the redox color indicator. Anal Lett. 2002;35:1541–9. https://doi.org/10.1081/AL-120006729.

    Article  CAS  Google Scholar 

  67. Yoshida N, McNiven SJ, Yoshida A, Morita T, Nakamura H, Karube I. A compact optical system for multi-determination of biochemical oxygen demand using disposable strips. Field Anal Chem Technol. 2001;5:222–7. https://doi.org/10.1002/fact.10001.

    Article  CAS  Google Scholar 

  68. Nakamura H, Mogi Y, Hattori H, Kita Y, Hattori D, Yoshimura A, et al. Absorption-based highly sensitive and reproducible biochemical oxygen demand measurement method for seawater using salt-tolerant yeast Saccharomyces cerevisiae ARIF KD-003. Anal Chim Acta. 2008;620:127–33. https://doi.org/10.1016/j.aca.2008.05.008.

    Article  CAS  PubMed  Google Scholar 

  69. Nakamura H, Hirata Y, Mogi Y, Kobayashi S, Suzuki K, Hirayama T, et al. A simple and highly repeatable colorimetric toxicity assay method using DCIP as the redox color indicator and whole eukaryote cells. Anal Bioanal Chem. 2007;389:835–40. https://doi.org/10.1007/s00216-007-1527-1.

    Article  CAS  PubMed  Google Scholar 

  70. Nakamura H, Hattori D, Tokunaga D, Suzuki Y. An isothermal absorptiometric assay for viable microbes using redox color indicator 2,6-dichlorophenolindophenol. Anal Biochem. 2013;441:140–6. https://doi.org/10.1016/j.ab.2013.07.010.

    Article  CAS  PubMed  Google Scholar 

  71. Zhai J, Liu L, Yong D, Li D, Dong S. Neutral red based colorimetric microorganism bioassay for direct toxicity assessment of toxic chemicals in water. Anal Methods. 2012;4:3849–54. https://doi.org/10.1039/C2AY25899D.

    Article  CAS  Google Scholar 

  72. Zhai J, Yong D, Li J, Dong S. A novel colorimetric biosensor for monitoring and detecting acute toxicity in water. Analyst. 2013;138:702–7. https://doi.org/10.1039/C2AN36160D.

    Article  CAS  PubMed  Google Scholar 

  73. Nakamura H, Suzuki M. New concept for a toxicity assay based on multiple indexes from the wave shape of damped metabolic oscillation induced in living yeast cells – Part I: Characterization of the phenomenon. Anal Bioanal Chem. 2007;389:1225–32. https://doi.org/10.1007/s00216-007-1517-3.

    Article  CAS  PubMed  Google Scholar 

  74. Nakamura H, Suzuki M. New concept for a toxicity assay based on multiple indexes from the wave shape of damped metabolic oscillation induced in living yeast cells – Part II: Application to analytical toxicology. Anal Bioanal Chem. 2007;389:1233–41. https://doi.org/10.1007/s00216-007-1513-7.

    Article  CAS  PubMed  Google Scholar 

  75. Ponomareva ON, Arlyapov VA, Alferov VA, Reshetilov AN. Microbial biosensors for detection of biological oxygen demand (a Review). Appl Biochem Microbiol. 2011;47:1–11. https://doi.org/10.1134/S0003683811010108.

    Article  CAS  Google Scholar 

  76. Reshetilov AN, Arlyapov V, Alferov V, Reshetilova T. BOD biosensors: application of novel technologies and prospects for the development. In: Rinken T, editor. State of the art in biosensors – environmental and medical applications. Croatia: InTech; 2013. https://doi.org/10.5772/52385.

    Chapter  Google Scholar 

  77. Jouanneau S, Recoules L, Durand MJ, Boukabache A, Picot V, Primault Y, et al. Methods for assessing biochemical oxygen demand (BOD): a review. Water Res. 2014;49:62–82. https://doi.org/10.1016/j.watres.2013.10.066.

    Article  CAS  PubMed  Google Scholar 

  78. Hassan SHA, Van Ginkel SW, Hussein MAM, Abskharon R, Oh SE. Toxicity assessment using different bioassays and microbial biosensors. Environ Int. 2016;92-93:106–18. https://doi.org/10.1016/j.envint.2016.03.003.

    Article  CAS  PubMed  Google Scholar 

  79. Nakanishi K, Ikebukuro K, Karube I. Determination of cyanide using a microbial sensor. Appl Biochem Biotechnol. 1996;60:97–106. https://doi.org/10.1007/BF02788064.

    Article  CAS  PubMed  Google Scholar 

  80. Ikebukuro K, Nakamura H, Karube I. Cyanides. In: Nollet LML, editor. Handbook of water analysis. New York: Marcel Dekker; 2000. p. 367–85.

    Google Scholar 

  81. Chang JC, Taylor PB, Leach FR. Use of the Microtox assay system for environmental samples. Bull Environ Contam Toxicol. 1981;26:150–6.

    Article  CAS  PubMed  Google Scholar 

  82. Keane A, Phoenix P, Ghoshal S, Lau PCK. Exposing culprit organic pollutants: a review. J Microbiol Methods. 2002;49:103–19. https://doi.org/10.1016/S0167-7012(01)00382-7.

    Article  CAS  PubMed  Google Scholar 

  83. Bulich AA, Isenberg DL. Use of the luminescent bacterial system for the rapid assessment of aquatic toxicity. ISA Trans. 1981;20:29–33.

    CAS  PubMed  Google Scholar 

  84. Hyun CK, Tamiya E, Takeuchi T, Karube I. A novel BOD sensor based on bacterial luminescence. Biotechnol Bioeng. 1993;41:1107–11. http://europepmc.org/abstract/med/7251338.

  85. Van Dyk TK, Majarian WR, Konstantinov KB, Young RM, Dhurjati PS, LaRossa RA. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol. 1994;60:1414–20. http://aem.asm.org/content/60/5/1414.short

  86. Belkin S, Smulski DR, Dadon S, Vollmer AC, Van Dyk TK, LaRossa RA. A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Res. 1997;31:3009–16. https://doi.org/10.1016/S0043-1354(97)00169-3.

    Article  CAS  Google Scholar 

  87. Virta M, Lampinen J, Karp M. A luminescence-based mercury biosensor. Anal Chem. 1995;67:667–9. https://doi.org/10.1021/ac00099a027.

    Article  CAS  Google Scholar 

  88. Walmsley RM, Billinton N, Heyer WD. Green fluorescent protein as a reporter for the DNA damage-induced gene RAD54 in Saccharomyces cerevisiae. Yeast. 1997;13:1535–45. https://doi.org/10.1002/(SICI)1097-0061(199712)13:16<;1535::AID-YEA221>;3.0.CO;2-2.

  89. Roda A. Chemiluminescence and Bioluminescence: Past, present, and future. London: RSC Publishing; 2010.

    Book  Google Scholar 

  90. Woutersen M, Belkin S, Brouwer B, Wezel AP, Minne B, Heringa MB. Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal Bioanal Chem. 2011;400:915–29. https://doi.org/10.1007/s00216-010-4372-6.

    Article  CAS  PubMed  Google Scholar 

  91. Roda A, Guardigli M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem. 2012;402:69–76. https://doi.org/10.1007/s00216-011-5455-8.

    Article  CAS  PubMed  Google Scholar 

  92. Xiao Y, De Araujo C, Sze CC, Stuckey DC. Toxicity measurement in biological wastewater treatment processes: a review. J Hazard Mater. 2015;286:15–29. https://doi.org/10.1016/j.jhazmat.2014.12.033.

    Article  CAS  PubMed  Google Scholar 

  93. Roda A, Mirasoli M, Michelini E, Fusco MD, Zangheri M, Cevenini L, et al. Progress in chemical luminescence-based biosensors: a critical review. Biosens Bioelectron. 2016;76:164–79. https://doi.org/10.1016/j.bios.2015.06.017.

    Article  CAS  PubMed  Google Scholar 

  94. Thouand G, Marks RS. Bioluminescent microbial biosensors: design, construction, and implementation. Singapore: Pan Stanford Publishing Pte. Ltd.; 2016.

    Google Scholar 

  95. Ahn JM, Kim JH, Kim JH, Gu MB. Randomly distributed arrays of optically coded functional microbeads for toxicity screening and monitoring. Lab Chip. 2010;10:2695–701. https://doi.org/10.1039/C004942E.

    Article  CAS  PubMed  Google Scholar 

  96. Ahn JM, Gu MB. Geno-Tox: cell array biochip for genotoxicity monitoring and classification. Appl Biochem Biotechnol. 2012;168:752–60. https://doi.org/10.1007/s12010-012-9815-4.

    Article  CAS  PubMed  Google Scholar 

  97. Jung I, Seo HB, Lee J, Kim BC, Gu MB. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity. Analyst. 2014;139:4696–701. https://doi.org/10.1039/C4AN00308J.

    Article  CAS  PubMed  Google Scholar 

  98. Eltzov E, Cohen A, Marks RS. Bioluminescent liquid light guide pad biosensor for indoor air toxicity monitoring. Anal Chem. 2015;87:3655–61. https://doi.org/10.1021/ac5038208.

    Article  CAS  PubMed  Google Scholar 

  99. Eltzov E, Yehuda A, Marks RS. Creation of a new portable biosensor for water toxicity determination. Sensors Actuators B Chem. 2015;221:1044–54. https://doi.org/10.1016/j.snb.2015.06.153.

    Article  CAS  Google Scholar 

  100. Axelrod T, Eltzov E, Marks RS. Bioluminescent bioreporter pad biosensor for monitoring water toxicity. Talanta. 2016;149:290–7. https://doi.org/10.1016/j.talanta.2015.11.067.

    Article  CAS  PubMed  Google Scholar 

  101. Mazzai A, Eltzov E, Manzano M, Marks RS. Probing putative carcinogenic potential of processed and unprocessed meat using bioluminescent bacterial bioreporters. Sensors Actuators B Chem. 2017;239:113–9. https://doi.org/10.1016/j.snb.2016.07.180.

    Article  CAS  Google Scholar 

  102. Roda A, Cevenini L, Michelini E, Branchini BR. A portable bioluminescence engineered cell-based biosensor for on-site applications. Biosens Bioelectron. 2011;26:3647–53. https://doi.org/10.1016/j.bios.2011.02.022.

    Article  CAS  PubMed  Google Scholar 

  103. Cevenini L, Calabretta MM, Tarantino G, Michelini E, Roda A. Smartphone-interfaced 3D printed toxicity biosensor integrating bioluminescent “sentinel cells”. Sensors Actuators B Chem. 2016;225:249–57. https://doi.org/10.1016/j.snb.2015.11.017.

    Article  CAS  Google Scholar 

  104. Cevenini L, Calabretta MM, Lopreside A, Tarantino G, Ferri M, Roda A, et al. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity. Anal Bioanal Chem. 2016;408:8859–68. https://doi.org/10.1007/s00216-016-0062-3.

    Article  CAS  PubMed  Google Scholar 

  105. Roda A, Cevenini L, Borg S, Michelini E, Calabretta MM, Schüler D. Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab Chip. 2013;13:4881–9. https://doi.org/10.1039/C3LC50868D.

    Article  CAS  PubMed  Google Scholar 

  106. Charrier T, Durand MJ, Jouanneau S, Dion M, Pernetti M, Poncelet D, et al. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: Design and optimization of bioluminescent bacterial strains. Anal Bioanal Chem. 2011;400:1051–60. https://doi.org/10.1007/s00216-010-4353-9.

    Article  CAS  PubMed  Google Scholar 

  107. Charrier T, Chapeau C, Bendria L, Picart P, Daniel P, Thouand G. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: Technical development and proof of concept of the biosensor. Anal Bioanal Chem. 2011;400:1061–70. https://doi.org/10.1007/s00216-010-4354-8.

    Article  CAS  PubMed  Google Scholar 

  108. Horry H, Charrier T, Durand MJ, Vrignaud B, Picart P, Daniel P, et al. Technological conception of an optical biosensor with a disposable card for use. Sensors Actuators B Chem. 2007;122:527–34. https://doi.org/10.1016/j.snb.2006.06.033.

    Article  CAS  Google Scholar 

  109. Jouanneau S, Durand MJ, Courcoux P, Blusseau T, Thouand G. Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Environ Sci Technol. 2011;45:2925–31. dx.doi.org. https://doi.org/10.1021/es1031757.

    Article  CAS  PubMed  Google Scholar 

  110. Jouanneau S, Durand MJ, Thouand G. Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors. Environ Sci Technol. 2012;46:11979–87. https://doi.org/10.1021/es3024918.

    Article  CAS  PubMed  Google Scholar 

  111. Affi M, Solliec C, Legentilhomme P, Comiti J, Legrand J, Jouanneau S, et al. Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor. Anal Bioanal Chem. 2016;408:8761–70. https://doi.org/10.1007/s00216-016-9490-3.

    Article  CAS  PubMed  Google Scholar 

  112. Jouanneau S, Durand-Thouand MJ, Thouand G. Design of a toxicity biosensor based on Aliivibrio fischeri entrapped in a disposable card. Environ Sci Pollut Res. 2016;23:4340–5. https://doi.org/10.1007/s11356-015-4942-4.

    Article  CAS  Google Scholar 

  113. Prévéral S, Brutesco C, Descamps ECT, Escoffier C, Pignol D, Ginet N, et al. A bioluminescent arsenite biosensor designed for inline water analyzer. Environ Sci Pollut Res. 2017;24:25–32. https://doi.org/10.1007/s11356-015-6000-7.

    Article  CAS  Google Scholar 

  114. Tseng HW, Tsai YJ, Yen JH, Chen PH, Yeh YC. A fluorescence-based microbial sensor for the selective detection of gold. Chem Commun. 2014;50:1735–7. https://doi.org/10.1039/C3CC48028C.

    Article  CAS  Google Scholar 

  115. Jha RK, Kern TL, Kim Y, Tesar C, Jedrzejczak R, Joachimiak A, et al. A microbial sensor for organophosphate hydrolysis exploiting an engineered specificity switch in a transcription factor. Nucleic Acids Res. 2016;44:8490–500. https://doi.org/10.1093/nar/gkw687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee WI, Shrivastava S, Duy LT, Kim BY, Son YM, Lee NE. A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy. Biosens Bioelectron. 2017;94:643–50. https://doi.org/10.1016/j.bios.2017.03.061.

    Article  CAS  PubMed  Google Scholar 

  117. Nakamura H, Murakami Y, Yokoyama K, Tamiya E, Karube I, Suda M, et al. A compactly integrated flow cell with a chemiluminescent FIA system for determining lactate concentration in serum. Anal Chem. 2001;73:373–8. https://doi.org/10.1021/ac000855u.

    Article  CAS  PubMed  Google Scholar 

  118. Roggo C, Meer JR. Miniaturized and integrated whole cell living bacterial sensors in field applicable autonomous devices. Curr Opin Biotechnol. 2017;45:24–33. https://doi.org/10.1016/j.copbio.2016.11.023.

    Article  CAS  PubMed  Google Scholar 

  119. Kou S, Cheng D, Sun F, Hsing IM. Microfluidics and microbial engineering. Lab Chip. 2016;16:432–46. https://doi.org/10.1039/C5LC01039J.

    Article  CAS  PubMed  Google Scholar 

  120. Recoules L, Migaou A, Dollat X, Thouand G, Gue AM, Boukabache A. A MEMS approach to determine the biochemical oxygen demand (BOD) of wastewaters. J Micromech Microeng. 2017;27:075018. https://doi.org/10.1088/1361-6439/aa710e.

    Article  CAS  Google Scholar 

  121. Choi S. Microscale microbial fuel cells: Advances and challenges. Biosens Bioelectron. 2015;69:8–25. https://doi.org/10.1016/j.bios.2015.02.021.

    Article  CAS  PubMed  Google Scholar 

  122. Dávila D, Esquivel JP, Sabaté N, Mas J. Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron. 2011;26:2426–30. https://doi.org/10.1016/j.bios.2010.10.025.

    Article  CAS  PubMed  Google Scholar 

  123. Zhao X, Dong T. A microfluidic device for continuous sensing of systemic acute toxicants in drinking water. Int J Environ Res Public Health. 2013;10:6748–63. https://doi.org/10.3390/ijerph10126748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yeom SH, Kang BH, Kim KJ, Kang SW. Nanostructures in biosensor– a review. Front Biosci. 2011;16:997–1023. https://doi.org/10.2741/3731.

    Article  CAS  Google Scholar 

  125. Lim JW, Ha D, Lee J, Lee SK, Kim T. Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol. 2015;3:61. https://doi.org/10.3389/fbioe.2015.00061.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Melamed S, Elad T, Belkin S. Microbial sensor cell arrays. Curr Opin Biotechnol. 2012;23:2–8. https://doi.org/10.1016/j.copbio.2011.11.024.

    Article  CAS  PubMed  Google Scholar 

  127. Wegener J. Cell-based microarrays for in vitro toxicology. Annu Rev Anal Chem. 2015;8:335–58. https://doi.org/10.1146/annurev-anchem-071213-020051.

    Article  CAS  Google Scholar 

  128. Kaimori S, Kitamura T, Ichino M, Hosoya T, Kurusu F, Ishikawa T, et al. Structural development of a minimally invasive sensor chip for blood glucose monitoring. Anal Chim Acta. 2006;573-574:104–9. https://doi.org/10.1016/j.aca.2006.03.005.

    Article  CAS  PubMed  Google Scholar 

  129. Kitamura T, Kaimori S, Harada A, Ishikawa T, Fujimura T, Nakamura H, et al. Development of blood glucose monitoring sensor strip that uses small blood sample. SEI Technical Rev. 2006;63:19–21. http://www.sei.co.jp/technology/tr/pdf/sei10474.pdf.

  130. Nakamura H, Tohyama K, Tanaka M, Shinohara S, Tokunaga Y, Kurusu F, et al. Development of a package-free transparent disposable biosensor chip for simultaneous measurements of blood constituents and investigation of its storage stability. Biosens Bioelectron. 2007;23:621–6. https://doi.org/10.1016/j.bios.2007.07.006.

    Article  CAS  PubMed  Google Scholar 

  131. Gotoh M, Hirose H, Ishikawa T, Nakamura H, Yokoyama K. Establishment of ferricyanide chronoamperometric total antioxidant capacity assay employing a carbon screen-printed disposable microchip-fundamental study using vegetable extraction. Sens Material. 2015;27:825–38. https://doi.org/10.18494/SAM.2015.1119.

    Article  CAS  Google Scholar 

  132. Nakamura H. Google scholar cite. https://scholar.google.com/citations?user=Cesgwz8AAAAJ&hl=en

  133. Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ. Screen-printed biosensors in microbiology; a review. Talanta. 2010;82:1629–36. https://doi.org/10.1016/j.talanta.2010.08.033.

    Article  CAS  PubMed  Google Scholar 

  134. Cui Y. Electronic materials, devices, and signals in electrochemical sensors. IEEE Trans Electron Device. 2017;64:1–11. https://doi.org/10.1109/TED.2017.2691045.

    Article  CAS  Google Scholar 

  135. Erable B, Duţeanu NM, Ghangrekar MM, Dumas C, Scott K. Application of electro-active biofilms. Biofouling. 2010;26:57–71. https://doi.org/10.1080/08927010903161281.

    Article  CAS  PubMed  Google Scholar 

  136. Patil S, Harnisch F, Schröder U. Toxicity response of electroactive microbial biofilms—a decisive feature for potential biosensor and power source applications. Chem Phys Chem. 2010;11:2834–7. https://doi.org/10.1002/cphc.201000218.

    Article  CAS  PubMed  Google Scholar 

  137. Yoetz-Kopelman T, Dror Y, Shacham-Diamand Y, Freeman A. “Cells-on-Beads”: a novel immobilization approach for the construction of whole-cell amperometric biosensors. Sensors Actuators B Chem. 2016;232:758–64. https://doi.org/10.1016/j.snb.2016.03.132.

    Article  CAS  Google Scholar 

  138. Yoetz-Kopelman T, Pandey R, Freeman A, Shacham-Diamand Y. Modeling of suspended versus immobilized whole-cell amperometric biosensors. Sensors Actuators B Chem. 2017;238:1248–57. https://doi.org/10.1016/j.snb.2016.09.062.

    Article  CAS  Google Scholar 

  139. Székács A, Trummer N, Adányi N, Váradi M, Szendrő I. Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide light mode spectroscopic detection. Anal Chim Acta. 2003;487:31–42. https://doi.org/10.1016/S0003-2670(03)00302-7.

    Article  CAS  Google Scholar 

  140. Nakamura H, Mogi Y, Akimoto T, Naemura K, Kato T, Yano K, et al. An enzyme-chromogenic surface plasmon resonance biosensor probe for hydrogen peroxide determination using a modified Trinder's reagent. Biosens Bioelectron. 2008;24:455–60. https://doi.org/10.1016/j.bios.2008.04.022.

    Article  CAS  PubMed  Google Scholar 

  141. Adányi N, Bori Z, Szendrő I, Erdélyi K, Wang X, Schröder HC, et al. Biosilica-based immobilization strategy for label-free OWLS sensors. Sensors Actuators B Chem. 2013;177:1–7. https://doi.org/10.1016/j.snb.2012.10.116.

    Article  CAS  Google Scholar 

  142. Adányi N, Bori Z, Szendrő I, Erdélyi K, Wang X, Schröder HC, et al. Bacterial sensors based on biosilica immobilization for label-free OWLS detection. New Biotechnol. 2013;30:493–9. https://doi.org/10.1016/j.nbt.2013.01.006.

    Article  CAS  Google Scholar 

  143. Schloßmacher U, Wiens M, Schröder HC, Wang X, Jochum KP, Müller WEG. Silintaphin-1 interaction with silicatein during structure-guiding bio-silica formation. FEBS J. 2011;278:1145–55. https://doi.org/10.1111/j.1742-4658.2011.08040.x.

    Article  CAS  PubMed  Google Scholar 

  144. Kashem MA, Suzuki M, Kimoto K, Iribe Y. An optical biochemical oxygen demand biosensor chip for environmental monitoring. Sensors Actuators B Chem. 2015;221:1594–600. https://doi.org/10.1016/j.snb.2015.07.119.

    Article  CAS  Google Scholar 

  145. Ivandini TA, Saepudin E, Wardah H, Dewangga N, Einaga Y. Development of a biochemical oxygen demand sensor using gold-modified boron doped diamond electrodes. Anal Chem. 2012;84:9825–32. https://doi.org/10.1021/ac302090y.

    Article  CAS  PubMed  Google Scholar 

  146. Yamashita T, Ookawa N, Ishida M, Kanamori H, Sasaki H, Katayose Y, et al. A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment. Sci Rep. 2016;6:38552. https://doi.org/10.1038/srep38552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nakano R, Kuroki Y, Shimojo M, Kawakami M. Evaluation of biochemical oxygen demand for wastewater based on. Res Bull Fukuoka Inst Technol. 2016;49:1–7. http://hdl.handle.net/11478/545

    Google Scholar 

  148. Šefčovičová J, Filip J, Mastihuba V, Gemeiner P, Tkac J. Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor. Biotechnol Lett. 2012;34:1033–9. https://doi.org/10.1007/s10529-012-0875-x.

    Article  CAS  PubMed  Google Scholar 

  149. Šefčovičová J, Filip J, Tkac J. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor. Chem Pap. 2015;69:176–82. https://doi.org/10.1515/chempap-2015-0012.

    Article  CAS  Google Scholar 

  150. Aslan S, Anik Ü. Microbial glucose biosensors based on glassy carbon paste electrodes modified with Gluconobacter oxydans and graphene oxide or graphene-platinum hybrid nanoparticles. Microchim Acta. 2016;183:73–81. https://doi.org/10.1007/s00604-015-1590-9.

    Article  CAS  Google Scholar 

  151. Arlyapov VA, Kamanin S, Ponamoreva ON, Reshetilov AN. Biosensor analyzer for BOD index express control on the basis of the yeast microorganisms Candida maltosa, Candida blankii, and Debaryomyces hansenii. Enzym Microb Technol. 2012;50:215–20. https://doi.org/10.1016/j.enzmictec.2012.01.002.

    Article  CAS  Google Scholar 

  152. Arlyapov VA, Yudina NY, Asulyan LD, Alferov SV, Alferov VA, Reshetilov AN. BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly (vinyl alcohol) modified by N-vinylpyrrolidone. Enzym Microb Technol. 2013;53:257–62. https://doi.org/10.1016/j.enzmictec.2013.05.004.

    Article  CAS  Google Scholar 

  153. Ponamoreva ON, Kamanina OA, Alferov VA, Machulin AV, Rogova TV, Arlyapov VA, et al. Yeast-based self-organized hybrid biosilica sol–gels for the design of biosensors. Biosens Bioelectron. 2015;67:321–6. https://doi.org/10.1016/j.bios.2014.08.045.

    Article  CAS  PubMed  Google Scholar 

  154. Raudkivi K, Tutt M, Talpsep E, Kikas T. Pseudomonas putida P67. 2 and Pseudomonas flourescens P75 based microbial sensors for biochemical oxygen demand (BOD) measurements in phenolic wastewaters of oil shale industry. Oil Shale. 2008;25:376–86.

    Article  CAS  Google Scholar 

  155. Raud M, Linde E, Kibena E. S Velling S, Tenn T, Talpsep E, Kikas T. Semi-specific biosensors for measuring BOD in dairy wastewater. J Chem Technol Biotechnol. 2010;85:957–61. https://doi.org/10.1002/jctb.2385.

    Article  CAS  Google Scholar 

  156. Raud M, Tenno T, Jõgi E, Kikas T. Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters. Enzym Microb Technol. 2012;50:221–6. https://doi.org/10.1016/j.enzmictec.2012.01.003.

    Article  CAS  Google Scholar 

  157. Raud M, Tutt M, Jõgi E, Kikas T. BOD biosensors for pulp and paper industry wastewater analysis. Environ Sci Pol. 2012;19:3039–45. https://doi.org/10.1007/s11356-012-0817-0.

    Article  CAS  Google Scholar 

  158. Kibena E, Raud M, Jõgi E, Kikas T. Semi-specific Microbacterium phyllosphaerae-based microbial sensor for biochemical oxygen demand measurements in dairy wastewater. Environ Sci Pol. 2013;20:2492–8. https://doi.org/10.1007/s11356-012-1166-8.

    Article  CAS  Google Scholar 

  159. Raud M, Kikas T. Bioelectronic tongue and multivariate analysis: a next step in BOD measurements. Water Res. 2013;47:2555–62. https://doi.org/10.1016/j.watres.2013.02.026.

    Article  CAS  PubMed  Google Scholar 

  160. Pitman K, Raud M, Kikas T. Biochemical oxygen demand sensor arrays. Agron Res. 2015;13:382–95.

    Google Scholar 

  161. Li Y, Sun J, Wang J, Bian C, Tong J, Li Y, et al. A single-layer structured microbial sensor for fast detection of biochemical oxygen demand. Biochem Eng J. 2016;112:219–25. https://doi.org/10.1016/j.bej.2016.04.021.

    Article  CAS  Google Scholar 

  162. Li Y, Sun J, Wang J, Bian C, Tong J, Li Y, et al. A microbial electrode based on the co-electrodeposition of carboxyl graphene and Au nanoparticles for BOD rapid detection. Biochem Eng J. 2017;123:86–94. https://doi.org/10.1016/j.bej.2017.03.015.

    Article  CAS  Google Scholar 

  163. Hsieh MC, Chung YC. Measurement of biochemical oxygen demand from different wastewater samples using a mediatorless microbial fuel cell biosensor. Environ Technol. 2014;35:2204–11. https://doi.org/10.1080/09593330.2014.898700.

    Article  CAS  PubMed  Google Scholar 

  164. Hsieh MC, Cheng CY, Liu MH, Chung YC. Effects of operating parameters on measurements of biochemical oxygen demand using a mediatorless microbial fuel cell biosensor. Sensors. 2016;16:35. https://doi.org/10.3390/s16010035.

    Article  CAS  Google Scholar 

  165. Webber JB, Noonan M, Pasco NF, Hay JM. Appraising bacterial strains for rapid BOD sensing—an empirical test to identify bacterial strains capable of reliably predicting real effluent BODs. Appl Microbiol Biotechnol. 2011;89:179–88. https://doi.org/10.1007/s00253-010-2889-4.

    Article  CAS  PubMed  Google Scholar 

  166. Czolkos I, Dock E, Tønning E, Christensen J, Winther-Nielsene M, Carlsson C, et al. Prediction of wastewater quality using amperometric bioelectronic tongues. Biosens Bioelectron. 2016;75:375–82. https://doi.org/10.1016/j.bios.2015.08.055.

    Article  CAS  PubMed  Google Scholar 

  167. Cetó X, Voelcker NH, Prieto-Simón B. Bioelectronic tongues: new trends and applications in water and food analysis. Biosens Bioelectron. 2016;79:608–26. https://doi.org/10.1016/j.bios.2015.12.075.

    Article  CAS  PubMed  Google Scholar 

  168. Valle M. Bioelectronic tongues employing electrochemical biosensors. TRE Bioelectroanal. 2016;6:143–202. https://doi.org/10.1007/11663_2016_2.

    Article  Google Scholar 

  169. Zhang Y, Angelidaki I. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability. Biotechnol Bioeng. 2011;108:2339–47. https://doi.org/10.1002/bit.23204.

    Article  CAS  PubMed  Google Scholar 

  170. Peixoto L, Min B, Martins G, Brito AG, Kroff P, Parpot P, et al. In situ microbial fuel cell-based biosensor for organic carbon. Bioelectrochemistry. 2011;81:99–103. https://doi.org/10.1016/j.bioelechem.2011.02.002.

    Article  CAS  PubMed  Google Scholar 

  171. Yang GX, Sun YM, Kong XY, Zhen F, Li Y, Li LH, et al. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor. Water Sci Technol. 2013;68:1914–9. https://doi.org/10.2166/wst.2013.415.

    Article  CAS  PubMed  Google Scholar 

  172. Ayyaru S, Dharmalingam S. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor. Anal Chim Acta. 2014;818:15–22. https://doi.org/10.1016/j.aca.2014.01.059.

    Article  CAS  PubMed  Google Scholar 

  173. Ayyaru S, Dharmalingam S. A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application. Energy. 2015;88:202–8. https://doi.org/10.1016/j.energy.2015.05.015.

    Article  CAS  Google Scholar 

  174. Logroño W, Guambo A, Pérez M, Kadier A, Recalde C. A terrestrial single chamber microbial fuel cell-based biosensor for biochemical oxygen demand of synthetic rice washed wastewater. Sensors. 2016;16:101. https://doi.org/10.3390/s16010101.

    Article  CAS  Google Scholar 

  175. Kharkwal S, Tan YC, Lu M, Ng HY. Development and long-term stability of a novel microbial fuel cell BOD sensor with MnO2 catalyst. Int J Mol Sci. 2017;18:276. https://doi.org/10.3390/ijms18020276.

    Article  CAS  PubMed Central  Google Scholar 

  176. Anam M, Yousaf S, Sharafat I, Zafar Z, Ayaz K, Ali N. Comparing natural and artificially designed bacterial consortia as biosensing elements for rapid non-specific detection of organic pollutant through microbial fuel cell. Int J Electrochem Sci. 2017;12:2836–51. https://doi.org/10.20964/2017.04.49.

    Article  CAS  Google Scholar 

  177. Nalewajko C, Lean DRS. Growth and excretion in planktonic algae and bacteria. J Phycol. 1972;8:361–6. https://doi.org/10.1111/j.1529-8817.1972.tb04049.x.

    Article  CAS  Google Scholar 

  178. Munster U, Chrost RJ. Origin, composition, and microbial utilization of dissolved organic matter. In: Overbeck J, Chrost RJ, editors. Aquatic microbial ecology. New York: Springer; 1990. p. 8–46. https://doi.org/10.1007/978-1-4612-3382-4_2.

    Chapter  Google Scholar 

  179. Shimotori K, Omori Y, Hama T. Bacterial production of marine humic-like fluorescent dissolved organic matter and its biogeochemical importance. Aquat Microb Ecol. 2010;58:55–66. https://doi.org/10.3354/ame01350.

    Article  Google Scholar 

  180. Tranvik LJ. Microbial transformation of labile dissolved organic matter into humic-like matter in seawater. FEMS Microbiol Ecol. 1993;12:177–83. https://doi.org/10.1111/j.1574-6941.1993.tb00030.x.

    Article  CAS  Google Scholar 

  181. Kobayashi S, Nakada S, Nakajima M, Yamamoto K, Akiyama S, Fuchi M, et al. Visualization of the distribution of dissolved organic matter in Osaka Bay using a satellite ocean color sensor (COMS/GOCI). J Water Environ Technol. 2017;15:55–64. https://doi.org/10.2965/jwet.16-055.

    Article  Google Scholar 

  182. Chen HY, Guan YX, Yao SJ. A novel two-species whole-cell immobilization system composed of marine-derived fungi and its application in wastewater treatment. J Chem Technol. 2014;89:1733–40. https://doi.org/10.1002/jctb.4253.

    Article  CAS  Google Scholar 

  183. Chen HY, Wang M, Shen Y, Yao SJ. Optimization of two-species whole-cell immobilization system constructed with marine-derived fungi and its biological degradation ability. Chin J Chem Eng. 2014;22:187–92. https://doi.org/10.1016/S1004-9541(14)60024-0.

    Article  CAS  Google Scholar 

  184. Górski Ł, Trzebuniak KF, Elżbieta M. Low bod determination methods: the state-of-the-art. Chem Process Eng. 2012;33:629–37. https://doi.org/10.2478/v10176-012-0053-7.

    Article  CAS  Google Scholar 

  185. Balootaki PA, Hassanshahian M. Microbial biosensor for marine environments. Bull Environ Pharmacol Life Sci. 2014;3:1–13.

    Google Scholar 

  186. Cheng L, QueK SB, Cord-Ruwisch R. Hexacyanoferrate-adapted biofilm enables the development of a microbial fuel cell biosensor to detect trace levels of assimilatable organic carbon (AOC) in oxygenated seawater. Biotechnol Bioeng. 2014;111:2412–20. https://doi.org/10.1002/bit.25315.

    Article  CAS  PubMed  Google Scholar 

  187. Quek SB, Cheng L, Cord-Ruwisch R. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions. Water Res. 2015;77:64–71. https://doi.org/10.1016/j.watres.2015.03.012.

    Article  CAS  PubMed  Google Scholar 

  188. Quek SB, Cheng L, Cord-Ruwisch R. Detection of low concentration of assimilatable organic carbon in seawater prior to reverse osmosis membrane using microbial electrolysis cell biosensor. Desalinat Water Treat. 2015;55:2885–90. https://doi.org/10.1080/19443994.2014.940224.

    Article  CAS  Google Scholar 

  189. Quek SB, Cheng L, Cord-Ruwisch R. In-line deoxygenation for organic carbon detections in seawater using a marine microbial fuel cell-biosensor. Bioresour Technol. 2015;182:34–40. https://doi.org/10.1016/j.biortech.2015.01.078.

    Article  CAS  PubMed  Google Scholar 

  190. Ebrahimi A, Yousefi Kebria D, Darzi GN. Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell. Environ Technol 2017:1–10. https://doi.org/10.1080/09593330.2017.1323958

  191. Chee GJ. Development and characterization of microbial biosensors for evaluating low biochemical oxygen demand in rivers. Talanta. 2013;117:366–70. https://doi.org/10.1016/j.talanta.2013.09.031.

    Article  CAS  PubMed  Google Scholar 

  192. Liu C, Zhao H, Ma Z, An T, Liu C, Zhao L, et al. Novel environmental analytical system based on combined biodegradation and photoelectrocatalytic detection principles for rapid determination of organic pollutants in wastewaters. Environ Sci Technol. 2014;48:1762–8. https://doi.org/10.1021/es4031358.

    Article  CAS  PubMed  Google Scholar 

  193. Namour P, Jaffrezic-Renault N. Sensors for measuring biodegradable and total organic matter in water. Trends Anal Chem. 2010;29:848–57. https://doi.org/10.1016/j.trac.2010.04.013.

    Article  CAS  Google Scholar 

  194. Hong SW, Kim HS, Chung TH. Alteration of sediment organic matter in sediment microbial fuel cells. Environ Pollut. 2010;158:185–91. https://doi.org/10.1016/j.envpol.2009.07.022.

    Article  CAS  PubMed  Google Scholar 

  195. Liu Z, Liu J, Zhang S, Xing XH, Su Z. Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Bioresour Technol. 2011;102:10221–9. https://doi.org/10.1016/j.biortech.2011.08.053.

    Article  CAS  PubMed  Google Scholar 

  196. Liang B, Li L, Tang XJ, Lang Q, Wang H, Li F, et al. Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosens Bioelectron. 2013;45:19–24. https://doi.org/10.1016/j.bios.2013.01.050.

    Article  CAS  PubMed  Google Scholar 

  197. Golitsch F, Bücking C, Gescher J. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron. 2013;47:285–91. https://doi.org/10.1016/j.bios.2013.03.010.

    Article  CAS  PubMed  Google Scholar 

  198. Nomura Y, Ikebukuro K, Yokoyama K, Takeuchi T, Arikawa Y, Ohno S, et al. A novel microbial sensor for anionic surfactant determination. Anal Lett. 1994;27:3095–108. https://doi.org/10.1080/00032719408000313.

    Article  Google Scholar 

  199. Nomura Y, Ikebukuro K, Yokoyama K, Takeuchi T, Arikawa Y, Ohno S, et al. Application of a linear alkylbenzene sulfonate biosensor to river water monitoring. Biosens Bioelectron. 1998;13:1047–53. https://doi.org/10.1016/S0956-5663(97)00077-8.

    Article  CAS  PubMed  Google Scholar 

  200. Zhang Q, Xia YF, Hong JM. Mechanism and toxicity research of benzalkonium chloride oxidation in aqueous solution by H2O2/Fe2+ process. Environ Sci Pollut Res. 2016;23:17822–30. https://doi.org/10.1007/s11356-016-6986-5.

    Article  CAS  Google Scholar 

  201. Okada T, Karube I, Suzuki S. Microbial sensor system which uses Methylomonas sp. for the determination of methane. Appl Microbiol Biotechnol. 1981;12:102–6. https://doi.org/10.1007/BF01970042.

    Article  CAS  Google Scholar 

  202. Karube I, Okada T, Suzuki S. A methane gas sensor based on oxidizing bacteria. Anal Chim Acta. 1982;135:61–7. https://doi.org/10.1016/S0003-2670(01)85265-X.

    Article  CAS  Google Scholar 

  203. Damgaard LR, Revsbech NP. A microscale biosensor for methane containing methanotrophic bacteria and an internal oxygen reservoir. Anal Chem. 1997;69:2262–7. https://doi.org/10.1021/ac9611576.

    Article  CAS  PubMed  Google Scholar 

  204. Zarei M, Farahbakhsh A. A modified optical microbial biosensor for detection of methane using gold nanoparticle and methanotrophic bacteria. J Materials Sci Surface Eng. 2016;4:335–8.

    CAS  Google Scholar 

  205. Baronian KHR, Gurazada S. Electrochemical detection of wild type Saccharomyces cerevisiae responses to estrogens. Biosens Bioelectron. 2007;22:2493–9. https://doi.org/10.1016/j.bios.2006.09.031.

    Article  CAS  PubMed  Google Scholar 

  206. Plekhanova YV, Reshetilov AN, Manolov TV, Taranova LA. Biosensor monitoring of microbial treatment of wastewater from nonylphenol polyethoxylates under flow-through conditions. Appl Biochem Microbiol. 2011;47:846–51. https://doi.org/10.1134/S0003683811090043.

    Article  CAS  Google Scholar 

  207. Bazin I, Seo HB, Suehs CM, Ramuz M, De Waad M, Gu MB. Profiling the biological effects of wastewater samples via bioluminescent bacterial biosensors combined with estrogenic assays. Environ Sci Pollut Res. 2017;24:33–41. https://doi.org/10.1007/s11356-016-6050-5.

    Article  CAS  Google Scholar 

  208. Villalba MM, McKeegan KJ, Vaughan DH, Cardosi MF, Davis J. Bioelectroanalytical determination of phosphate: a review. J Mol Catal B Enzym. 2009;59:1–8. https://doi.org/10.1016/j.molcatb.2008.12.011.

    Article  CAS  Google Scholar 

  209. Nakamura H. Phosphate ion determination in water for drinking using biosensors. Bunseki Kagaku. 2001;50:581–2. https://doi.org/10.2116/bunsekikagaku.50.581.

    Article  CAS  Google Scholar 

  210. Ikebukuro K, Nishida R, Yamamoto H, Arikawa Y, Nakamura H, Suzuki M, et al. A novel biosensor system for the determination of phosphate. J Biotechnol. 1996;48:67–72. https://doi.org/10.1016/0956-5663(96)87655-X.

    Article  CAS  Google Scholar 

  211. Ikebukuro K, Nakamura H, Karube I, Kubo I, Inagawa M, Sugawara T, et al. Phosphate sensing system using pyruvate oxidase and chemiluminescence detection. Biosens Bioelectron. 1996;11:959–65. https://doi.org/10.1016/0168-1656(96)01398-3.

    Article  CAS  Google Scholar 

  212. Nakamura H, Ikebukuro K, McNiven S, Karube I, Yamamoto H, Hayashi K, et al. A chemiluminescent FIA biosensor for phosphate ion monitoring using pyruvate oxidase. Biosens Bioelectron. 1997;12:959–66. https://doi.org/10.1016/S0956-5663(97)00032-8.

    Article  CAS  PubMed  Google Scholar 

  213. Suzuki M, Kurata H, Inoue Y, Shin H, Kubo I, Nakamura H, et al. Reagentless phosphate ion sensor system for environmental monitoring. Electrochemistry. 1998;66:579–83. http://iss.ndl.go.jp/books/R100000002-I000000031819-00

    CAS  Google Scholar 

  214. Nakamura H, Hasegawa M, Nomura Y, Ikebukuro K, Arikawa Y, Karube I. Improvement of a CL-FIA system using maltose phosphorylase for the determination of phosphate-ion in freshwater. Anal Lett. 2003;36:1805–17. https://doi.org/10.1081/AL-120023615.

    Article  CAS  Google Scholar 

  215. Goron TL, Raizada MN. Current and future transgenic whole-cell biosensors for plant macro- and micronutrients. Crit Rev Plant Sci. 2014;33:392–413. https://doi.org/10.1080/07352689.2014.885733.

    Article  CAS  Google Scholar 

  216. Gillor O, Hadas O, Post AF, Belkin S. Phosphorus bioavailability monitoring by a bioluminescent cyanobacterial sensor strain. J Phycol. 2002;38:107–15. https://doi.org/10.1046/j.1529-8817.2002.01069.x.

    Article  Google Scholar 

  217. Gillor O, Harush A, Hadas O, Post AF, Belkin S. A synechococcus PglnA::luxAB fusion for estimation of nitrogen bioavailability to freshwater cyanobacteria. Appl Environ Microbiol. 2003;69:1465–74. https://doi.org/10.1128/AEM.69.3.1465-1474.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Meer JR, Belkin S. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol. 2010;8:511–22. https://doi.org/10.1038/nrmicro2392.

    Article  CAS  PubMed  Google Scholar 

  219. Elad T, Belkin S. Reporter gene assays in ecotoxicology. In: Reifferscheid G, Buchinger S, editors. In vitro in vitro environmental toxicology – concepts, application, and assessment. Berlin: Springer; 2017. p. 135–57.

    Google Scholar 

  220. Gillor O, Hadas O, Post AF, Belkin S. Phosphorus and nitrogen in a monomythic freshwater lake: employing cyanobacterial bioreporters to gain new insights into nutrient bioavailability. Freshwater Boil. 2010;55:1182–90. https://doi.org/10.1111/j.1365-2427.2009.02342.x.

    Article  CAS  Google Scholar 

  221. Faraghi N, Ebrahimi S. Nitrite as a candidate substrate in microbial fuel cells. Biotechnol Lett. 2012;34:1483–6. https://doi.org/10.1007/s10529-012-0939-y.

    Article  CAS  PubMed  Google Scholar 

  222. Rezvani F, Sarrafzadeh MH, Ebrahimi S, Oh HM. Nitrate removal from drinking water with a focus on biological methods: a review. Environ Sci Pollut Res 2017:1–18. https://doi.org/10.1007/s11356-017-9185-0

  223. Raud M, Lember E, Jõgi E, Kikas T. Nitrosomonas sp. based biosensor for ammonium nitrogen measurement in wastewater. Biotechnol Bioprocess Eng. 2013;18:1016–21. https://doi.org/10.1007/s12257-013-0078-x.

    Article  CAS  Google Scholar 

  224. Zuki SNSM, Tan LL, Azmi NS, Heng LY, Chong KF, Tajuddin SN. A whole cell bio-optode based on immobilized nitrite-degrading microorganism on the acrylic microspheres for visual quantitation of nitrite ion. Sensors Actuators B Chem. 2018;255:2844–52. https://doi.org/10.1016/j.snb.2017.09.102.

    Article  CAS  Google Scholar 

  225. Qi P, Zhang D, Wan Y. Development of an amperometric microbial biosensor based on Thiobacillus thioparus cells for sulfide and its application to detection of sulfate-reducing bacteria. Electroanalysis. 2014;26:1824–30. https://doi.org/10.1002/elan.201400198.

    Article  CAS  Google Scholar 

  226. Ebrahimi E, Yazdian F, Amoabediny G, Shariati MR, Janfada B, Saber M. A microbial biosensor for hydrogen sulfide monitoring based on potentiometry. Process Biochem. 2014;49:1393–401. https://doi.org/10.1016/j.procbio.2014.05.003.

    Article  CAS  Google Scholar 

  227. Vosoughi A, Yazdian F, Amoabediny G, Hakim M. Investigating the effect of design parameters on the response time of a highly sensitive microbial hydrogen sulfide biosensor based on oxygen consumption. Biosens Bioelectron. 2015;70:106–14. https://doi.org/10.1016/j.bios.2015.03.025.

    Article  CAS  PubMed  Google Scholar 

  228. Gupta V, Saharan K, Kumar L, Gupta R, Sahai V, Mittal A. Spectrophotometric ferric ion biosensor from Pseudomonas fluorescens culture. Biotechnol Bioeng. 2008;100:284–96. https://doi.org/10.1002/bit.21754.

    Article  CAS  PubMed  Google Scholar 

  229. Tran PHN, Luong TTT, Nguyen TTT, Nguyen HQ, Duong HV, Kim BH, et al. Possibility of using a lithotrophic iron-oxidizing microbial fuel cell as a biosensor for detecting iron and manganese in water samples. Environ Sci Processes Impacts. 2015;17:1806–15. https://doi.org/10.1039/C5EM00099H.

    Article  CAS  Google Scholar 

  230. Liang PS, San Park T, Yoon JY. Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor. Sci Rep. 2014;4:5953. https://doi.org/10.1038/srep05953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Thouand G, Durand MJ. Bacteria in ecotoxicology: recombinant luminescent bacteria. Encyclopedia of aquatic ecotoxicology. New York: Springer; 2013. p. 137–50. https://doi.org/10.1007/978-94-007-5704-2_14.

    Book  Google Scholar 

  232. Durand MJ, Hua A, Jouanneau S, Cregut M, Thouand G. Detection of metal and organometallic compounds with bioluminescent bacterial bioassays. In: Thouand G, Marks R, editors. Bioluminescence: fundamentals and applications in biotechnology. New York: Springer; 2015. p. 77–99. https://doi.org/10.1007/10_2015_332.

    Chapter  Google Scholar 

  233. Jouanneau S, Durand MJ, Lahmar A, Thouand G. Main Technological Advancements in bacterial bioluminescent biosensors over the last two decades. In: Thouand G, Marks R, editors. Bioluminescence: fundamentals and applications in biotechnology. New York: Springer; 2015. p. 101–16. https://doi.org/10.1007/10_2015_333.

    Chapter  Google Scholar 

  234. Jouanneau S, Durand MJ, Assaf A, Bittel M, Thouand G. Bacterial bioreporter applications in ecotoxicology: concepts and practical approach. Microb Ecotoxicol. 2017:283–311. https://doi.org/10.1007/978-3-319-61795-4_12.

  235. Mankiewicz-Boczek J, Karwaciak I, Ratajewski M, Gągała I, Jurczak T, Zalewski M, et al. Application of cellular biosensors for detection of atypical toxic bioactivity in microcystin-containing cyanobacterial extracts. Aquat Toxicol. 2015;168:1–10. https://doi.org/10.1016/j.aquatox.2015.09.004.

    Article  CAS  PubMed  Google Scholar 

  236. Hassan SHA, Van Ginkel SW, Oh SE. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor. Chemoso. 2013;90:9655–970. https://doi.org/10.1016/j.chemosphere.2012.06.040.

    Article  CAS  Google Scholar 

  237. Shen YJ, Lefebvre O, Tan Z, Ng Y. Microbial fuel cell-based toxicity sensor for fast monitoring of acidic toxicity. Water Sci Technol. 2012;65:1223–8. https://doi.org/10.2166/wst.2012.957.

    Article  CAS  PubMed  Google Scholar 

  238. Liu B, Lei Y, Li B. A batch-mode cube microbial fuel cell based “shock” biosensor for wastewater quality monitoring. Biosens Bioelectron. 2014;62:308–14. https://doi.org/10.1016/j.bios.2014.06.051.

    Article  CAS  PubMed  Google Scholar 

  239. Xu Z, Liu B, Dong Q, Lei Y, Li Y, Ren J, et al. Flat microliter membrane-based microbial fuel cell as “on-line sticker sensor” for self-supported in situ monitoring of wastewater shocks. Bioresour Technol. 2015;197:244–51. https://doi.org/10.1016/j.biortech.2015.08.081.

    Article  CAS  PubMed  Google Scholar 

  240. Xu Z, Liu Y, Williams I, Li Y, Qian F, Zhang H, et al. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time “shock” biosensor for wastewater. Biosens Bioelectron. 2016;85:232–9. https://doi.org/10.1016/j.bios.2016.05.018.

    Article  CAS  PubMed  Google Scholar 

  241. Stein NE, Hamelers HVM, Buisman CNJ. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions. Bioelectrochemistry. 2010;78:87–91. https://doi.org/10.1016/j.bioelechem.2009.09.009.

    Article  CAS  PubMed  Google Scholar 

  242. Stein NE, Keesman KJ, Hamelers HVM, Straten G. Kinetic models for detection of toxicity in a microbial fuel cell based biosensor. Biosens Bioelectron. 2011;26:3115–20. https://doi.org/10.1016/j.bios.2010.11.049.

    Article  CAS  PubMed  Google Scholar 

  243. Stein NE, Hamelers HVM, Buisman CNJ. Influence of membrane type, current and potential on the response to chemical toxicants of a microbial fuel cell based biosensor. Sensors Actuators B Chem. 2012;163:1–7. https://doi.org/10.1016/j.snb.2011.10.060.

    Article  CAS  Google Scholar 

  244. Stein NE, Hamelers HVM, Buisman CNJ. The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell-based biosensor. Sensors Actuators B Chem. 2012;171/172:816–21. https://doi.org/10.1016/j.snb.2012.05.076.

    Article  CAS  Google Scholar 

  245. Stein NE, Hamelers HVM, Straten G, Keesman KJ. On-line detection of toxic components using a microbial fuel cell-based biosensor. J Process Control. 2012;22:1755–61. https://doi.org/10.1016/j.jprocont.2012.07.009.

    Article  CAS  Google Scholar 

  246. Kim M, Hyun MS, Gadd GM, Kim HJ. A novel biomonitoring system using microbial fuel cells. J Environ Monit. 2007;9:1323–8. https://doi.org/10.1039/B713114C.

    Article  CAS  PubMed  Google Scholar 

  247. Labro J, Craig T, Wood SA, Packer MA. Demonstration of the use of a photosynthetic microbial fuel cell as an environmental biosensor. Int J Nanotechnol. 2017;14:1741–51. https://doi.org/10.1504/IJNT.2017.082467.

    Article  Google Scholar 

  248. Jiang Y, Liang P, Liu P, Yan X, Bian Y, Huang X. A cathode-shared microbial fuel cell sensor array for water alert system. Int J Hydrog Energy. 2017;42:4342–8. https://doi.org/10.1016/j.ijhydene.2016.12.050.

    Article  CAS  Google Scholar 

  249. Jiang Y, Liang P, Liu P, Wang D, Miao B, Huang X. A novel microbial fuel cell sensor with biocathode sensing element. Biosens Bioelectron. 2017;94:344–50. https://doi.org/10.1016/j.bios.2017.02.052.

    Article  CAS  PubMed  Google Scholar 

  250. Yu D, Bai L, Zhai J, Wang Y, Dong S. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta. 2017;168:210–6. https://doi.org/10.1016/j.talanta.2017.03.048.

    Article  CAS  PubMed  Google Scholar 

  251. Zhang Q, Ding J, Kou K, Qin W. A potentiometric flow biosensor based on ammonia-oxidizing bacteria for the detection of toxicity in water. Sensors. 2013;13:6936–45. https://doi.org/10.3390/s130606936.

    Article  CAS  PubMed  Google Scholar 

  252. Bittel M, Cordella CBY, Assaf A, Jouanneau S, Durand MJ, Thouand G. Potential of Raman spectroscopy to monitor arsenic toxicity on bacteria: Insights toward multiparametric bioassays. Environ Sci Technol. 2015;49:12324–32. https://doi.org/10.1021/acs.est.5b03013.

    Article  CAS  PubMed  Google Scholar 

  253. Biswas P, Karn AK, Balasubramanian P, Kale PG. Biosensor for detection of dissolved chromium in potable water: a review. Biosens Bioelectron. 2017;94:589–604. https://doi.org/10.1016/j.bios.2017.03.043.

    Article  CAS  PubMed  Google Scholar 

  254. Merulla D, Buffi N, Beggah S, Truffer F, Geiser M, Renaud P, et al. Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Curr Opin Biotechnol. 2013;24:534–41. https://doi.org/10.1016/j.copbio.2012.09.002.

    Article  CAS  PubMed  Google Scholar 

  255. Chen J, Rosen BP. Biosensors for inorganic and organic arsenicals. Biosensors. 2014;4:494–512. https://doi.org/10.3390/bios4040494.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Kaur H, Kumar R, Babu JN, Mittal S. Advances in arsenic biosensor development – a comprehensive review. Biosens Bioelectron. 2015;63:533–45. https://doi.org/10.1016/j.bios.2014.08.003.

    Article  CAS  PubMed  Google Scholar 

  257. Shen Y, Wang M, Chang IS, Ng HY. Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu (II). Bioresour Technol. 2013;136:707–10. https://doi.org/10.1016/j.biortech.2013.02.069.

    Article  CAS  PubMed  Google Scholar 

  258. Chiou CH, Chien LJ, Chou TC, Lin JL, Tseng JT. Rapid whole-cell sensing chip for low-level arsenite detection. Biosens Bioelectron. 2011;26:2484–8. https://doi.org/10.1016/j.bios.2010.10.037.

    Article  CAS  PubMed  Google Scholar 

  259. Cortés-Salazar F, Beggah S, Meer JR, Girault HH. Electrochemical As(III) whole-cell based biochip sensor. Biosens Bioelectron. 2013;47:237–42. https://doi.org/10.1016/j.bios.2013.03.011.

    Article  CAS  PubMed  Google Scholar 

  260. Wang X, Liu M, Wang X, Wu Z, Yang L, Xia S. P-benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosens Bioelectron. 2013;41:557–62. https://doi.org/10.1016/j.bios.2012.09.020.

    Article  CAS  PubMed  Google Scholar 

  261. Prabhakaran DC, Riotte J, Sivry Y, Subramanian S. Electroanalytical detection of Cr (VI) and Cr (III) ions using a novel microbial sensor. Electroanalysis. 2017;29:1222–31. https://doi.org/10.1002/elan.201600458.

    Article  CAS  Google Scholar 

  262. Li L, Liang J, Hong W, Zhao Y, Sun S, Yang X, et al. Evolved bacterial biosensor for arsenite detection in environmental water. Environ Sci Technol. 2015;49:6149–55. https://doi.org/10.1021/acs.est.5b00832.

    Article  CAS  PubMed  Google Scholar 

  263. Asif S, Chaudhari A, Gireesh-Babu P, Chaudhuri PR, Sen R. Immobilization of fluorescent whole cell biosensors for the improved detection of heavy metal pollutants present in aquatic environment. Materials Today Proc. 2016;3:3492–7. https://doi.org/10.1016/j.matpr.2016.10.032.

    Article  Google Scholar 

  264. Kim M, Lim JW, Kim HJ, Lee SK, Lee SJ, Kim T. Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosens Bioelectron. 2015;65:257–64. https://doi.org/10.1016/j.bios.2014.10.028.

    Article  CAS  PubMed  Google Scholar 

  265. Kim HJ, Lim JW, Jeong H, Lee SJ, Lee DW, Kim T, et al. Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens Bioelectron. 2016;79:701–8. https://doi.org/10.1016/j.bios.2015.12.101.

    Article  CAS  PubMed  Google Scholar 

  266. Kumar S, Verma N, Singh AK. Development of cadmium specific recombinant biosensor and its application in milk samples. Sensors Actuators B Chem. 2017;240:248–54. https://doi.org/10.1016/j.snb.2016.08.160.

    Article  CAS  Google Scholar 

  267. Bereza-Malcolm L, Aracic S, Kannan R, Mann G, Franks AE. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors. Biosens Bioelecron. 2017;94:380–7. https://doi.org/10.1016/j.bios.2017.03.029.

    Article  CAS  Google Scholar 

  268. Gammoudi I, Raimbault V, Tarbague H, Moroté F, Grauby-Heywang C, Othmane A, et al. Enhanced bio-inspired microsensor based on microfluidic/bacteria/love wave hybrid structure for continuous control of heavy metals toxicity in liquid medium. Sensors Actuators B Chem. 2014;198:278–84. https://doi.org/10.1016/j.snb.2014.01.104.

    Article  CAS  Google Scholar 

  269. Gammoudi I, Tarbague H, Othmane A, Moynet D, Rebière D, Kalfat R, et al. Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium. Biosens Bioelectron. 2010;26:1723–6. https://doi.org/10.1016/j.bios.2010.07.118.

    Article  CAS  PubMed  Google Scholar 

  270. Biran A, Yoav HB, Yagur-Kroll S, Pedahzur R, Buchinger S, Shacham-Diamand Y, et al. Microbial genotoxicity bioreporters based on sulA activation. Anal Bioanal Chem. 2011;400:3013–24. https://doi.org/10.1007/s00216-011-5007-2.

    Article  CAS  PubMed  Google Scholar 

  271. Hnaien M, Bourigua S, Bessueille F, Bausells J, Errachid A, Lagarde F, et al. Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection. Electrochim Acta. 2011;56:10353–8. https://doi.org/10.1016/j.electacta.2011.04.041.

    Article  CAS  Google Scholar 

  272. Mulchandani A. Rajesh. Microbial biosensors for organophosphate pesticides. Appl Biochem Biotechnol. 2011;165:687–99. https://doi.org/10.1007/s12010-011-9288-x.

    Article  CAS  PubMed  Google Scholar 

  273. Verma N, Bhardwaj A. Biosensor technology for pesticides – a review. Appl Biochem Biotechnol. 2015;175:3093–119. https://doi.org/10.1007/s12010-015-1489-2.

    Article  CAS  PubMed  Google Scholar 

  274. Tang X, Zhang T, Liang B, Han D, Zeng L, Zheng C, et al. Sensitive electrochemical microbial biosensor for p-nitrophenyl organophosphates based on electrode modified with cell surface-displayed organophosphorus hydrolase and ordered mesopore carbons. Biosens Bioelectron. 2014;60:137–42. https://doi.org/10.1016/j.bios.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  275. Karim F, Fakhruddin ANM. Recent advances in the development of biosensor for phenol: a review. Rev Environ Sci Biotechnol. 2012;11:261–74. https://doi.org/10.1007/s11157-012-9268-9.

    Article  CAS  Google Scholar 

  276. Kumar J, D'Souza SF. Microbial biosensor for detection of methyl parathion using screen printed carbon electrode and cyclic voltammetry. Biosens Bioelectron. 2011;26:4289–93. https://doi.org/10.1016/j.bios.2011.04.027.

    Article  CAS  PubMed  Google Scholar 

  277. Chen Z, Niu Y, Zhao S, Khan A, Ling Z, Chen Y, et al. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell. Biosens Bioelectron. 2016;85:860–8. https://doi.org/10.1016/j.bios.2016.06.007.

    Article  CAS  PubMed  Google Scholar 

  278. Di Gennaro P, Bruzzese N, Anderlini D, Aiossa M, Papacchini M, Campanella L, et al. Development of microbial engineered whole-cell systems for environmental benzene determination. Ecotoxicol Environ Saf. 2011;74:542–9. https://doi.org/10.1016/j.ecoenv.2010.08.006.

    Article  CAS  PubMed  Google Scholar 

  279. Hashimoto Y, Nakamura H, Asaga K, Karube I. A new diagnostic method for soil-borne disease using a microbial biosensor. Microbes Environ. 2008;23:35–9. https://doi.org/10.1264/jsme2.23.35.

    Article  PubMed  Google Scholar 

  280. Nakamura H, Nakayama Y, Gotoh M. Ferricyanide chronoamperometric total antioxidant capacity assay for green tea. Curr Topic Anal Chem. 2016;10:29–34. http://www.researchtrends.net/tia/abstract.asp?in=0&vn=10tid=30&aid=5937&pub=2016&type=

  281. Kubisch R, Bohrn U, Fleischer M, Stütz E. Cell-based sensor system using l6 cells for broad band continuous pollutant monitoring in aquatic environments. Sensors. 2012;12:3370–93. https://doi.org/10.3390/s120303370.

    Article  CAS  PubMed  Google Scholar 

  282. Nakamura H. Current status of water environment and their microbial biosensor techniques. Part I: Current data of water environment and recent studies on water quality investigations in Japan, and new possibility of microbial biosensor techniques. Anal Bioanal Chem. 2018; https://doi.org/10.1007/s00216-018-0923-z.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Nakamura.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Additional information

Published in the topical collection Microbial Biosensors for Analytical Applications with guest editor Gérald Thouand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, H. Current status of water environment and their microbial biosensor techniques – Part II: Recent trends in microbial biosensor development. Anal Bioanal Chem 410, 3967–3989 (2018). https://doi.org/10.1007/s00216-018-1080-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1080-0

Keywords

Navigation