Skip to main content
Log in

Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Annona cherimola Mill. (cherimoya) has widely been used as food crop. The leaves of this tree possess several health benefits, which are, in general, attributed mainly to its bioactive composition. However, literature concerning a comprehensive characterization based on a combined approach, which consists of nuclear magnetic resonance (NMR) and high-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF-MS), from these leaves is scarce. Thus, the aim of this work was to study the polar profile of full extracts of cherimoya leaves by using these tools. Thus, a total of 77 compounds have been characterized, 12 of which were identified by both techniques. Briefly, 23 compounds were classified as amino acids, organic acids, carbohydrates, cholines, phenolic acid derivatives, and flavonoids by NMR, while 66 metabolites were divided into sugars, amino acids, phenolic acids and derivatives, flavonoids, phenylpropanoids, and other polar compounds by HPLC-TOF-MS. It is worth mentioning that different solvent mixtures were tested and the total phenolic content in the extracts quantified (TPC via HPLC-TOF-MS). The tendency observed was EtOH/water 80/20 (v/v) (17.0 ± 0.2 mg TPC/g leaf dry weight (d.w.)) ≥ acetone/water 70/30 (v/v) (16.1 ± 0.7 mg TPC/g leaf d.w.) > EtOH/water 70/30 (v/v) (14.0 ± 0.3 mg TPC/g leaf d.w.) > acetone/water 80/20 (v/v) (13.5 ± 0.4 mg TPC/g leaf d.w.). Importantly, flavonoids derivatives were between 63 and 76% of the TPC in those extracts. Major compounds were sucrose, glucose (α and β), and proline, and chlorogenic acid and rutin for NMR and HPLC-TOF-MS, respectively.

The combined use of LC-HRMS and NMR is a potential synergic combination for a comprehensive metabolite composition of cherimoya leaves

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. González Vega ME. Chirimoya (Annona cherimola Miller), frutal tropical y sub-tropical de valores promisorios. Cultiv Trop. 2013;34(3):52–63.

    Google Scholar 

  2. Morton JF. Cherimoya. In: Curtis F. Dowling editors fruits of warm climates. Miami: J.F. Morton; 1987. p. 65–69.

  3. Arun Jyothi B, Venkatesh K, Chakrapani P, Roja Rani A. Phytochemical and pharmacological potential of Annona cherimola-a review. Int J Phytomedicine. 2011;3(4):439–47.

    Google Scholar 

  4. Ribeiro da Silva LM, Teixeira de Figueiredo EA, Silva Ricardo NMP, Pinto Vieira IG, Wilane de Figueiredo R, Brasil IM, et al. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014;143:398–404.

    Article  CAS  PubMed  Google Scholar 

  5. Seger C, Sturm S, Stuppner H. Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques—state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Nat Prod Rep. 2013;30(7):970.

    Article  CAS  PubMed  Google Scholar 

  6. Rizzuti A, Aguilera-Sáez LM, Gallo V, Cafagna I, Mastrorilli P, Latronico M, et al. On the use of Ethephon as abscising agent in cv. Crimson seedless table grape production: combination of fruit detachment force, fruit drop and metabolomics. Food Chem. 2015;171:341–50.

    Article  CAS  PubMed  Google Scholar 

  7. Theodoridis GA, Gika HG, Want EJ, Wilson ID. Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta. 2012;711:7–16.

    Article  CAS  PubMed  Google Scholar 

  8. Milman BL. General principles of identification by mass spectrometry. TrAC - Trends Anal Chem. 2015;69:24–33.

    Article  CAS  Google Scholar 

  9. Van Der Hooft JJJ, Mihaleva V, De Vos RCH, Bino RJ, Vervoort J. A Strategy for fast structural elucidation of metabolites in small volume plant extracts using automated MS-guided LC-MS-SPE-NMR. Magn Reson Chem. 2011;49:S55–60.

  10. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48(4):2097–8.

    Article  CAS  PubMed  Google Scholar 

  11. Moco S, Vervoort J, Moco S, Bino RJ, De Vos RCH, Bino R. Metabolomics technologies and metabolite identification. TrAC - Trends Anal Chem. 2007;26(9):855–66.

    Article  CAS  Google Scholar 

  12. López-Ruiz R, Ruiz-Muelle AB, Romero-González R, Fernández I, Martínez Vidal JL, Garrido Frenich A. The metabolic pathway of flonicamid in oranges using an orthogonal approach based on high-resolution mass spectrometry and nuclear magnetic resonance. Anal Methods. 2017;9(11):1718–26.

    Article  CAS  Google Scholar 

  13. Nagana Gowda GA, Raftery D. Can NMR solve some significant challenges in metabolomics? J Magn Reson. 2015;260:144–60.

    Article  CAS  PubMed  Google Scholar 

  14. Farag MA, Otify A, Porzel A, Michel CG, Elsayed A, Wessjohann LA. Comparative metabolite profiling and fingerprinting of genus Passiflora leaves using a multiplex approach of UPLC-MS and NMR analyzed by chemometric tools. Anal Bioanal Chem. 2016;408(12):3125–43.

    Article  CAS  PubMed  Google Scholar 

  15. Coutinho ID, Baker JM, Ward JL, Beale MH, Creste S, Cavalheiro AJ. Metabolite profiling of sugarcane genotypes and identification of flavonoid glycosides and phenolic acids. J Agric Food Chem. 2016;64(21):4198–206.

    Article  CAS  PubMed  Google Scholar 

  16. Hakeem Said I, Rezk A, Hussain I, Grimbs A, Shrestha A, Schepker H, et al. Metabolome comparison of bioactive and inactive Rhododendron extracts and identification of an antibacterial cannabinoid(s) from Rhododendron collettianum. Phytochem Anal. 2017;2017(June):454–64.

    Article  CAS  Google Scholar 

  17. García-Salas P, Gómez-Caravaca AM, Morales-Soto A, Segura-Carretero A, Fernández-Gutiérrez A. Identification and quantification of phenolic and other polar compounds in the edible part of Annona cherimola and its by-products by HPLC-DAD-ESI-QTOF-MS. Food Res Int. 2015;78(2015):246–57.

    Article  CAS  PubMed  Google Scholar 

  18. Benatti Justino A, Carnevalli Miranda N, Rodrigues Franco R, Machado Martins M, da Silva NM, Salmen Espindola F. Annona muricata Linn. Leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed Pharmacother. 2018;100:83–92.

    Article  CAS  Google Scholar 

  19. Díaz-de-Cerio E, Rodríguez-Nogales A, Algieri F, Romero M, Verardo V, Segura-Carretero A, et al. The hypoglycemic effects of guava leaf (Psidium guajava L.) extract are associated with improving endothelial dysfunction in mice with diet-induced obesity. Food Res Int. 2017;96:64–71.

    Article  CAS  PubMed  Google Scholar 

  20. Durand S, Sancelme M, Besse-Hoggan P, Combourieu B. Biodegradation pathway of mesotrione: complementarities of NMR, LC-NMR and LC-MS for qualitative and quantitative metabolic profiling. Chemosphere. 2010;81(3):372–80.

    Article  CAS  PubMed  Google Scholar 

  21. Kim HK, Choi YH, Verpoorte R. NMR-based metabolomic analysis of plants. Nat Protoc. 2010;5(3):536–49.

    Article  CAS  PubMed  Google Scholar 

  22. Nicholson JK, Lindon JC. Systems Biology: Metabonomics. Nature. 2007;274(5):1140–51.

    Google Scholar 

  23. Vendramin ME, Costa EV, Pereira dos Santos É, Belém Pinheiro ML, Barison A, Campos FR. Chemical constituents from the leaves of Annona rugulosa (Annonaceae). Biochem Syst Ecol. 2013;49(2009):152–5.

    Article  CAS  Google Scholar 

  24. Rabêlo SV, Costa EV, Barison A, Dutra LM, Nunes XP, Tomaz JC, et al. Alkaloids isolated from the leaves of atemoya (Annona cherimola × Annona squamosa). Brazilian J Pharmacogn. 2015;25(4):419–21.

    Article  CAS  Google Scholar 

  25. Thang TD, Kuo P-C, Huang G-J, Hung NH, Huang B-S, Yang M-L, et al. Chemical constituents from the leaves of Annona reticulata and their inhibitory effects on NO production. Molecules. 2013;18(4):4477–86.

    Article  CAS  PubMed  Google Scholar 

  26. Pinto DCGA, Santos CMM, Silva AMS. Advanced NMR techniques for structural characterization of heterocyclic structures. In: TMVD Pinho e Melo editor. Recent research developments in heterocyclic chemistry. Kerala: Research Signpost; 2007. p. 397–475.

  27. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727–47.

    Article  CAS  PubMed  Google Scholar 

  28. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74:418–25.

    Article  CAS  PubMed  Google Scholar 

  29. George VC, Dellaire G, Rupasinghe HPV. Plant flavonoids in cancer chemoprevention: role in genome stability. J Nutr Biochem. 2017;45:1–14.

    Article  CAS  PubMed  Google Scholar 

  30. Chan EW, Wong S, Lim Y, Ling S. Caffeoylquinic acids in leaves of selected Apocynaceae species: their isolation and content. Pharm Res. 2014;6(1):67.

    Google Scholar 

  31. Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL. Identification of Chlorogenic acid as a resistance factor for Thrips in chrysanthemum. Plant Physiol. 2009;150(3):1567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chávez-Servín JL, Castellote AI, López-Sabater MC. Analysis of mono- and disaccharides in milk-based formulae by high-performance liquid chromatography with refractive index detection. J Chromatogr A. 2004;1043(2):211–5.

    Article  CAS  PubMed  Google Scholar 

  33. Spínola V, Pinto J, Castilho PC. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015;173:14–30.

    Article  CAS  PubMed  Google Scholar 

  34. Steingass CB, Glock MP, Schweiggert RM, Carle R. Studies into the phenolic patterns of different tissues of pineapple (Ananas comosus [L.] Merr.) infructescence by HPLC-DAD-ESI-MSn and GC-MS analysis. Anal Bioanal Chem. 2015;407(21):6463–79.

    Article  CAS  PubMed  Google Scholar 

  35. Fu Q, Zhang C, Lin Z, Sun H, Liang Y, Jiang H, et al. Rapid screening and identification of compounds with DNA-binding activity from folium Citri Reticulatae using on-line HPLC-DAD-MSn coupled with a post column fluorescence detection system. Food Chem. 2016;192:250–9.

    Article  CAS  PubMed  Google Scholar 

  36. Wilson A. Flavonoid pigments in swallowtail butterflies. Phytochemistry. 1986;25:1309–13.

  37. Vega MRG, Esteves-Souza A, Vieira IJC, Mathias L, Braz-Filho R, Echevarria A. Flavonoids from Annona dioica leaves and their effects in Ehrlich carcinoma cells, DNA-topoisomerase I and II. J Braz Chem Soc. 2007;18(8):1554–9.

    Article  CAS  Google Scholar 

  38. Rodríguez-Pérez C, Quirantes-Piné R, Amessis-Ouchemoukh N, Khodir M, Segura-Carretero A, Fernández-Gutierrez A. A metabolite-profiling approach allows the identification of new compounds from Pistacia lentiscus leaves. J Pharm Biomed Anal. 2013;77:167–74.

    Article  CAS  PubMed  Google Scholar 

  39. Schügerl K. Extraction of primary and secondary metabolites. In: Kragl U, editor. Technology transfer in biotechnology advances in biochemical engineering. Berlin: Springer; 2005. p. 1–48.

    Google Scholar 

  40. Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010 Jan;15(10):7313–52.

    Article  CAS  PubMed  Google Scholar 

  41. Schuelter Boeing J, Oliveira Barizão É, Costa e Silva B, Fernandes Montanher P, de Cinque Almeida V, Vergilio Visentainer J. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chem Cent J. 2014;8(1):48.

    Article  CAS  Google Scholar 

  42. Díaz-de-Cerio E, Gómez-Caravaca AM, Verardo V, Fernández-Gutiérrez A, Segura-Carretero A. Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS. J Funct Foods. 2016;22:376–88.

    Article  CAS  Google Scholar 

  43. Benmeziane F, Djamai R, Cadot Y, Seridi R. Optimization of extraction parameters of phenolic compounds from Algerian fresh table grapes, (Vitis Vinifera). Int Food Res J. 2014;21(3):1025–9.

    Google Scholar 

  44. Rohr GE, Meier B, Sticher O. Analysis of procyanidins. Stud Nat Prod Chem. 2000;21(PART B):497–570.

    Article  CAS  Google Scholar 

  45. Santos-Buelga C, Scalbert A. Proanthocyanidins and tannin like compounds nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric. 2000;80:1094–117.

    Article  CAS  Google Scholar 

  46. Dhaouadi K, Meliti W, Dallali S, Belkhir M, Ouerghemmi S, Sebei H, et al. Commercial Lawsonia inermis L. dried leaves and processed powder: phytochemical composition, antioxidant, antibacterial, and allelopathic activities. Ind Crop Prod. 2015;77:544–52.

    Article  CAS  Google Scholar 

  47. Wong Paz JE, Muñiz Márquez DB, Martínez Ávila GCG, Belmares Cerda RE, Aguilar CN. Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrason Sonochem. 2014;22:1–8.

    Google Scholar 

  48. Zhen J, Villani TS, Guo Y, Qi Y, Chin K, Pan M-H, et al. Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chem. 2016;190:673–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Vito Verardo thanks the MINECO for his “Ramon y Cajal” contract.

Funding

This work was funded by projects AGL2015-67995-C3-2-R (Spanish Ministry of Science and Innovation), P11-CTS-7625, and P12-FQM-2668 (Andalusian Regional Government Council of Innovation and Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Arráez-Román.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Informed consent was not applicable.

Additional information

Published in the topical collection Discovery of Bioactive Compounds with guest editors Aldo Laganà, Anna Laura Capriotti and Chiara Cavaliere.

Electronic supplementary material

ESM 1

(PDF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-de-Cerio, E., Aguilera-Saez, L.M., Gómez-Caravaca, A.M. et al. Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Anal Bioanal Chem 410, 3607–3619 (2018). https://doi.org/10.1007/s00216-018-1051-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1051-5

Keywords

Navigation