Skip to main content
Log in

Online low-field NMR spectroscopy for process control of an industrial lithiation reaction—automated data analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Monitoring specific chemical properties is the key to chemical process control. Today, mainly optical online methods are applied, which require time- and cost-intensive calibration effort. NMR spectroscopy, with its advantage being a direct comparison method without need for calibration, has a high potential for enabling closed-loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and rough environments for process monitoring and advanced process control strategies. We present a fully automated data analysis approach which is completely based on physically motivated spectral models as first principles information (indirect hard modeling—IHM) and applied it to a given pharmaceutical lithiation reaction in the framework of the European Union’s Horizon 2020 project CONSENS. Online low-field NMR (LF NMR) data was analyzed by IHM with low calibration effort, compared to a multivariate PLS-R (partial least squares regression) approach, and both validated using online high-field NMR (HF NMR) spectroscopy.

NMR sensor module for monitoring of the aromatic coupling of 1-fluoro-2-nitrobenzene (FNB) with aniline to 2-nitrodiphenylamine (NDPA) using lithium-bis(trimethylsilyl) amide (Li-HMDS) in continuous operation. Online 43.5 MHz low-field NMR (LF) was compared to 500 MHz high-field NMR spectroscopy (HF) as reference method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wiles C, Watts P. Continuous flow reactors: a perspective. Green Chem. 2012;14(1):38.

    Article  CAS  Google Scholar 

  2. Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang P, Terefenko EA, McComas CC, Mahaney PE, Vu A, Trybulski E, et al. Synthesis and activity of novel 1- or 3-(3-amino-1-phenyl propyl)-1,3-dihydro-2H-benzimidazol-2-ones as selective norepinephrine reuptake inhibitors. Bioorg Med Chem Lett. 2008;18(23):6067.

    Article  CAS  PubMed  Google Scholar 

  4. Bieringer T, Buchholz S, Kockmann N. Future production concepts in the chemical industry: modular–small-scale–continuous. Chem Eng Technol. 2013;36(6):900.

    Article  CAS  Google Scholar 

  5. Chinnusamy T, Yudha SS, Hager M, Kreitmeier P, Reiser O. Application of metal-based reagents and catalysts in microstructured flow devices. ChemSusChem. 2012;5(2):247.

    Article  CAS  PubMed  Google Scholar 

  6. Meyer K, Kern S, Zientek N, Guthausen G, Maiwald M. Process control with compact NMR. TrAC Trends Anal Chem. 2016;83(Part A):39.

    Article  CAS  Google Scholar 

  7. Maiwald M, Gräßer P, Wander L, Zientek N, Guhl S, Meyer K, et al. Strangers in the night—smart process sensors in our current automation landscape. PRO. 2017;1:628. https://doi.org/10.3390/proceedings1040628.

    Article  Google Scholar 

  8. Edwards JC, Giammatteo PJ. In: Bakeev KA, editor. Process Analytical Technology. Hoboken: John Wiley & Sons, Ltd; 2010. https://doi.org/10.1002/9780470689592.ch10.

    Chapter  Google Scholar 

  9. Ferstl W, Klahn T, Schweikert W, Billeb G, Schwarzer M, Loebbecke S. Inline analysis in microreaction technology: a suitable tool for process screening and optimization. Chem Eng Technol. 2007;30(3):370.

    Article  CAS  Google Scholar 

  10. Leung S-A, Winkle RF, Wootton RCR, de Mello AJ. A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online Raman spectroscopic detection. Analyst. 2005;130(1):46.

    Article  CAS  PubMed  Google Scholar 

  11. Floyd TM, Schmidt MA, Jensen KF. Silicon micromixers with infrared detection for studies of liquid-phase reactions. Ind Eng Chem Res. 2005;44(8):2351.

    Article  CAS  Google Scholar 

  12. Markley JL. NMR analysis goes nano. Nat Biotechnol. 2007;25(7):750.

    Article  CAS  PubMed  Google Scholar 

  13. Maiwald M, Fischer HH, Kim Y-K, Albert K, Hasse H. Quantitative high-resolution on-line NMR spectroscopy in reaction and process monitoring. J Magn Reson. 2004;166(2):135.

    Article  CAS  PubMed  Google Scholar 

  14. Zientek N, Laurain C, Meyer K, Kraume M, Guthausen G, Maiwald M. Simultaneous 19F–1H medium resolution NMR spectroscopy for online reaction monitoring. J Magn Reson. 2014;249:53.

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell J, Gladden LF, Chandrasekera TC, Fordham EJ. Low-field permanent magnets for industrial process and quality control. Prog Nucl Magn Reson Spectrosc. 2014;76:1.

    Article  CAS  PubMed  Google Scholar 

  16. Zalesskiy SS, Danieli E, Blümich B, Ananikov VP. Miniaturization of NMR systems: desktop spectrometers, microcoil spectroscopy, and “NMR on a Chip” for chemistry, biochemistry, and industry. Chem Rev. 2014;114(11):5641.

    Article  CAS  PubMed  Google Scholar 

  17. Dalitz F, Cudaj M, Maiwald M, Guthausen G. Process and reaction monitoring by low-field NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2012;60:52.

    Article  CAS  PubMed  Google Scholar 

  18. Blümich B. Introduction to compact NMR: a review of methods. TrAC Trends Anal Chem. 2016;83(Part A):2.

    Article  CAS  Google Scholar 

  19. Singh K, Blümich B. NMR spectroscopy with compact instruments. TrAC Trends Anal Chem. 2016;83(Part A):12.

    Article  CAS  Google Scholar 

  20. Gouilleux B, Charrier B, Danieli E, Dumez J-N, Akoka S, Felpin F-X, et al. Real-time reaction monitoring by ultrafast 2D NMR on a benchtop spectrometer. Analyst. 2015;140(23):7854.

    Article  CAS  PubMed  Google Scholar 

  21. Wynn DA, Roth MM, Pollard BD. The solubility of alkali-metal fluorides in non-aqueous solvents with and without crown ethers, as determined by flame emission spectrometry. Talanta. 1984;31(11):1036.

    Article  CAS  PubMed  Google Scholar 

  22. Mazet V, Carteret C, Brie D, Idier J, Humbert B. Background removal from spectra by designing and minimising a non-quadratic cost function. Chemom Intell Lab Syst. 2005;76(2):121.

    Article  CAS  Google Scholar 

  23. Chen L, Weng ZQ, Goh LY, Garland M. An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. J Magn Reson. 2002;158(1–2):164.

    Article  CAS  Google Scholar 

  24. Savorani F, Tomasi G, Engelsen SB. icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson. 2010;202(2):190.

    Article  CAS  PubMed  Google Scholar 

  25. Michalik-Onichimowska A, Kern S, Riedel J, Panne U, King R, Maiwald M. “Click” analytics for “click” chemistry—a simple method for calibration–free evaluation of online NMR spectra. J Magn Reson. 2017;277:154.

    Article  CAS  PubMed  Google Scholar 

  26. Kriesten E, Alsmeyer F, BardoW A, Marquardt W. Fully automated indirect hard modeling of mixture spectra. Chemom Intell Lab Syst. 2008;91(2):181.

    Article  CAS  Google Scholar 

  27. Dondoni A, Giovannini PP, Massi A. Assembling heterocycle-tethered C-glycosyl and alpha-amino acid residues via 1,3-dipolar cycloaddition reactions. Org Lett. 2004;6(17):2929.

    Article  CAS  PubMed  Google Scholar 

  28. Kessler W. Multivariate Datenanalyse. Weinheim: Wiley-VCH Verlag GmbH & Co KGaA; 2006. https://doi.org/10.1002/9783527610037.ch4.

    Book  Google Scholar 

  29. Westad F, Marini F. Validation of chemometric models—a tutorial. Anal Chim Acta. 2015;893:14.

    Article  CAS  PubMed  Google Scholar 

  30. Zientek N, Laurain C, Meyer K, Paul A, Engel D, Guthausen G, et al. Automated data evaluation and modelling of simultaneous 19F–1H medium-resolution NMR spectra for online reaction monitoring. Magn Reson Chem. 2015; https://doi.org/10.1002/mrc.4216.

Download references

Acknowledgements

The authors thank Lukas Wander for his help plotting Fig. 3.

Funding

This study was supported by the funding of CONSENS by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 636942.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Maiwald.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 976 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kern, S., Meyer, K., Guhl, S. et al. Online low-field NMR spectroscopy for process control of an industrial lithiation reaction—automated data analysis. Anal Bioanal Chem 410, 3349–3360 (2018). https://doi.org/10.1007/s00216-018-1020-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1020-z

Keywords

Navigation