Skip to main content

Advertisement

Log in

Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Here, we utilized the ultrasonic emulsification technique to generate hyaluronic acid microspheres incorporating a fluorescence-based glucose biosensor. We synthesized a novel lanthanide ion luminophore based on Eu3+. Eu sulfosuccinimidyl dextran (Eu-dextran) and Alexa Fluor 647 sulfosuccinimidyl-ConA (Alexa Fluor 647-ConA) were encapsulated in hyaluronic acid hydrogel to generate microspheres. Glucose sensing was carried out using a fluorescence resonance energy transfer (FRET)-based assay principle. A proportional fluorescence intensity increase was found within a 0.5–10-mM glucose concentration range. The glucose-sensing strategy showed an excellent tolerance for potential interferents. Meanwhile, the fluorescent signal of hyaluronic acid microspheres was very stable after testing for 72 h in glucose solution. Overall, hyaluronic acid microspheres encapsulating sensing biomolecules offer a stable and biocompatible biosensor for a variety of applications including cell culture systems, tissue engineering, detection of blood glucose, etc.

We report an ingenious biosensor encapsulated in hyaluronic acid microspheres for monitoring of glucose. Glucose sensing is carried out using a fluorescence resonance energy transfer-based assay principle with a novel lanthanide ions luminophore. The glucose detection system has excellent biocompatibility and stability for monitoring of glucose

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu B, Zhang LP, Chen ML, Chen ML, Wang JH. The inhibition of fluorescence resonance energy transfer between quantum dots for glucose assay. Biosens Bioelectron. 2012;32(1):82–8. https://doi.org/10.1016/j.bios.2011.11.031.

    Article  CAS  Google Scholar 

  2. Fan Y, Jimenez Del Val I, Muller C, Wagtberg Sen J, Rasmussen SK, Kontoravdi C, et al. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Biotechnol Bioeng. 2015;112(3):521–35. https://doi.org/10.1002/bit.25450.

    Article  CAS  Google Scholar 

  3. Quek LE, Dietmair S, Kromer JO, Nielsen LK. Metabolic flux analysis in mammalian cell culture. Metab Eng. 2010;12(2):161–71. https://doi.org/10.1016/j.ymben.2009.09.002.

    Article  CAS  Google Scholar 

  4. Hegen H, Auer M, Deisenhammer F. Serum glucose adjusted cut-off values for normal cerebrospinal fluid/serum glucose ratio: implications for clinical practice. Clin Chem Lab Med. 2014;52(9):1335–40. https://doi.org/10.1515/cclm-2014-0077.

    Article  CAS  Google Scholar 

  5. Sharma BR, Kim HJ, Rhyu DY. Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes. J Transl Med. 2015;13:62. https://doi.org/10.1186/s12967-015-0412-5.

    Article  Google Scholar 

  6. Rao A, Wiley M, Iyengar S, Nadeau D, Carnevale J. Individuals achieve more accurate results with meters that are codeless and employ dynamic electrochemistry. J Diabetes Sci Technol. 2010;4(1):145–50. https://doi.org/10.1177/193229681000400118.

    Article  Google Scholar 

  7. Lan D, Li B, Zhang Z. Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron. 2008;24(4):940–4. https://doi.org/10.1016/j.bios.2008.07.064.

    Article  Google Scholar 

  8. Peng J, Wang Y, Wang J, Zhou X, Liu Z. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer. Biosens Bioelectron. 2011;28(1):414–20. https://doi.org/10.1016/j.bios.2011.07.057.

    Article  CAS  Google Scholar 

  9. Yuan J, Cen Y, Kong XJ, Wu S, Liu CL, Yu RQ, et al. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces. 2015;7(19):10548–55. https://doi.org/10.1021/acsami.5b02188.

    Article  CAS  Google Scholar 

  10. Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJ. Fluorescence-based glucose sensors. Biosens Bioelectron. 2005;20(12):2555–65. https://doi.org/10.1016/j.bios.2004.10.002.

    Article  CAS  Google Scholar 

  11. Mansouri S, Schultz JS. A miniature optical glucose sensor based on affinity binding. Nat Biotech. 1984;2(10):885–90.

    Article  CAS  Google Scholar 

  12. Lakowicz JR, Maliwal B. Optical sensing of glucose using phase-modulation fluorimetry. Anal Chim Acta. 1993;271(1):155–64. https://doi.org/10.1016/0003-2670(93)80563-Z.

    Article  Google Scholar 

  13. Geißler D, Linden S, Liermann K, Wegner KD, Charbonnière LJ, Hildebrandt N. Lanthanides and quantum dots as Förster resonance energy transfer agents for diagnostics and cellular imaging. lnorg Chem. 2014;53(4):1824–38. https://doi.org/10.1021/ic4017883.

    Article  Google Scholar 

  14. Zwier JM, Bazin H, Lamarque L, Mathis G. Luminescent lanthanide cryptates: from the bench to the bedside. Inorg Chem. 2014;53(4):1854–66. https://doi.org/10.1021/ic402234k.

    Article  CAS  Google Scholar 

  15. Massue J, Quinn SJ, Gunnlaugsson T. Lanthanide luminescent displacement assays: the sensing of phosphate anions using Eu(III)−cyclen-conjugated gold nanoparticles in aqueous solution. J Am Chem Soc. 2008;130(22):6900–1. https://doi.org/10.1021/ja800361e.

    Article  CAS  Google Scholar 

  16. Blomberg KR, Mukkala VM, Hakala HH, Makinen PH, Suonpaa MU, Hemmila IA. A dissociative fluorescence enhancement technique for one-step time-resolved immunoassays. Anal Bioanal Chem. 2011;399(4):1677–82. https://doi.org/10.1007/s00216-010-4485-y.

    Article  CAS  Google Scholar 

  17. Chen X, Wang Y, Chai R, Xu Y, Li H, Liu B. Luminescent lanthanide-based organic/inorganic hybrid materials for discrimination of glutathione in solution and within hydrogels. ACS Appl Mater Interfaces. 2017;9(15):13554–63. https://doi.org/10.1021/acsami.7b02679.

    Article  CAS  Google Scholar 

  18. del Mercato LL, Ferraro MM, Baldassarre F, Mancarella S, Greco V, Rinaldi R, et al. Biological applications of LbL multilayer capsules: from drug delivery to sensing. Adv Colloid Interf Sci. 2014;207:139–54. https://doi.org/10.1016/j.cis.2014.02.014.

    Article  Google Scholar 

  19. Aloraefy M, Pfefer TJ, Ramella-Roman JC, Sapsford KE. In vitro evaluation of fluorescence glucose biosensor response. Sensors (Basel). 2014;14(7):12127–48. https://doi.org/10.3390/s140712127.

    Article  CAS  Google Scholar 

  20. Ballerstadt R, Evans C, Gowda A, McNichols R. In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring. Diabetes Technol Ther. 2006;8(3):296–311. https://doi.org/10.1089/dia.2006.8.296.

    Article  CAS  Google Scholar 

  21. Ballerstadt R, Evans C, Gowda A, McNichols R. Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing. J Diabetes Sci Technol. 2007;1(3):384–93.

    Article  Google Scholar 

  22. Wang HN, Sun HF, Wei H, Xi P, Nie SM, Ren QS. Biocompatible hyaluronic acid polymer-coated quantum dots for CD44(+) cancer cell-targeted imaging. J Nanopart Res. 2014;16(10). doi:https://doi.org/10.1007/S11051-014-2621-X.

  23. Alpha B, Anklam E, Deschenaux R, Lehn JM, Pietraskiewicz M. Synthesis and characterisation of the sodium and lithium cryptates of macrobicyclic ligands incorporating pyridine, bipyridine, and biisoquinoline units. AcHCh. 1988;71(5):1042–52. https://doi.org/10.1002/hlca.19880710515.

    CAS  Google Scholar 

  24. Kubin RF, Fletcher AN. Fluorescence quantum yields of some rhodamine dyes. J Lumin. 1982;27(4):455–62. https://doi.org/10.1016/0022-2313(82)90045-X.

    Article  Google Scholar 

  25. Laurentin A, Edwards CA. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem. 2003;315(1):143–5. https://doi.org/10.1016/s0003-2697(02)00704-2.

    Article  CAS  Google Scholar 

  26. Schnebli HP, Lustig A, Zulauf M, Winterhalter KH, Joss U. Reaction of lectins with human erythrocytes. 4. Details of adsorption and desorption of ConA. Exp Cell Res. 1977;105(1):151–7. https://doi.org/10.1016/0014-4827(77)90161-6.

    Article  CAS  Google Scholar 

  27. Colombo E, Cavalieri F, Ashokkumar M. Role of counterions in controlling the properties of ultrasonically generated chitosan-stabilized oil-in-water emulsions. ACS Appl Mater Interfaces. 2015;7(23):12972–80. https://doi.org/10.1021/acsami.5b02773.

    Article  CAS  Google Scholar 

  28. Chen M, Yin H, Bai P, Miao P, Deng X, Xu Y, et al. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells. Toxicol Appl Pharmacol. 2016;303:11–20. https://doi.org/10.1016/j.taap.2016.04.017.

    Article  CAS  Google Scholar 

  29. Yin J, Meng Q, Zhang G, Sun Y. Differential methotrexate hepatotoxicity on rat hepatocytes in 2-D monolayer culture and 3-D gel entrapment culture. Chem Biol Interact. 2009;180(3):368–75. https://doi.org/10.1016/j.cbi.2009.04.004.

    Article  CAS  Google Scholar 

  30. Ferrante do Amaral CE, Wolf B. Current development in non-invasive glucose monitoring. Med Eng Phys. 2008;30(5):541–9. https://doi.org/10.1016/j.medengphy.2007.06.003.

    Article  Google Scholar 

  31. Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: recent developments. Sensors (Basel). 2017;17(8). doi:https://doi.org/10.3390/s17081866.

  32. Locke AK, Cummins BM, Coté GL. High affinity mannotetraose as an alternative to dextran in ConA based fluorescent affinity glucose assay due to improved FRET efficiency. ACS Sens. 2016;1(5):584–90. https://doi.org/10.1021/acssensors.5b00304.

    Article  CAS  Google Scholar 

  33. Latva M, Takalo H, Mukkala V-M, Matachescu C, Rodríguez-Ubis JC, Kankare J. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J Lumin. 1997;75(2):149–69. https://doi.org/10.1016/S0022-2313(97)00113-0.

    Article  CAS  Google Scholar 

  34. Sun XT, Zhang Y, Zheng DH, Yue S, Yang CG, Xu ZR. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles. Biosens Bioelectron. 2017;92:81–6. https://doi.org/10.1016/j.bios.2017.02.008.

    Article  CAS  Google Scholar 

  35. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3. https://doi.org/10.1126/science.1104742.

    Article  CAS  Google Scholar 

  36. Sachs S, Heller A, Weiss S, Bok F, Bernhard G. Interaction of Eu(III) with mammalian cells: cytotoxicity, uptake, and speciation as a function of Eu(III) concentration and nutrient composition. Toxicol in Vitro. 2015;29(7):1555–68. https://doi.org/10.1016/j.tiv.2015.06.006.

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was funded and supported by grants from the National Natural Science Foundation of China (No. 21307154), National Post-Doctor Science Foundation of China (No. 2017M621825), Post-Doctor Foundation of Jiangsu Province (No. 1701034C), and Industry-University Collaboration Project of Jiangsu Province (No. BY2015040-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huancai Yin or Jian Yin.

Ethics declarations

Written informed consent was obtained from all individual participants and blood samples for publication of this study. The experimental procedures, sample processing methods, and possible consequences are informed in advance. The contents of the informed consent are strictly enforced.

The author(s) promised that the study was performed according to the international, national, and institutional rules considering animal experiments, clinical studies, and biodiversity rights. The study was approved by the Ethics Committee of Suzhou Institute of Biomedical and Technology, Chinese Academy of Sciences.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Bai, P., Chen, M. et al. Utilizing hyaluronic acid as a versatile platform for fluorescence resonance energy transfer-based glucose sensing. Anal Bioanal Chem 410, 2413–2421 (2018). https://doi.org/10.1007/s00216-018-0928-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0928-7

Keywords

Navigation