Skip to main content
Log in

Cellular dielectrophoresis coupled with single-cell analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this review, recent advances that leverage dielectrophoretic approaches to accomplish single-cell analysis (both “on-chip” and ”off-chip”) are discussed with special emphasis on eukaryotic cells. Dielectrophoresis as an electric-field-induced force utilized for cell manipulation can confer selectivity without labeling. Recent technical improvements have increased the volumetric throughput of the separation of cells from complex mixtures, introduced new strategies for massively parallel single-cell confinement for subsequent on-chip analysis, made possible selective transport of individual cells off-chip, and integrated preconcentration and prefocusing steps to enhance dielectrophoretic performance. Collectively, these studies potentiate all-in-one platforms capable of taking as their input complex mixtures of cells and accomplishing single-cell analysis. Assays requiring small reaction volumes (e.g., enzymatic assays, fluorescent in situ hybridization, and immunostaining) have been demonstrated. Still greater opportunities to unravel cell-to-cell variations and for point-of-care applications can be realized by making possible on-chip gene amplification, live-cell assays, and either dielectrophoretic manipulation in native media or on-chip exchange of media. We therefore conclude with a discussion of emerging capabilities in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature. 2006;442(7101):403–11.

    Article  CAS  Google Scholar 

  2. Armbrecht L, Dittrich PS. Recent advances in the analysis of single cells. Anal Chem. 2017;89(1):2–21.

    Article  CAS  Google Scholar 

  3. Joosse SA, Gorges TM, Pantel K. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med. 2015;7(1):1–11.

    Article  CAS  Google Scholar 

  4. Dong Y, Skelley AM, Merdek KD, Sprott KM, Jiang C, Pierceall WE, et al. Microfluidics and circulating tumor cells. J Mol Diagn. 2013;15(2):149–57.

    Article  Google Scholar 

  5. Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8(5):329–40.

    Article  CAS  Google Scholar 

  6. Kaern M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet. 2005;6(6):451–64.

    Article  CAS  Google Scholar 

  7. Brock A, Chang H, Huang S. Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet. 2009;10(5):336–42.

    Article  CAS  Google Scholar 

  8. Perkins TJ, Swain PS. Strategies for cellular decision-making. Mol Syst Biol. 2009;5(1):326.

    Google Scholar 

  9. Walling MA, Shepard JR. Cellular heterogeneity and live cell arrays. Chem Soc Rev. 2011;40(7):4049–76.

    Article  CAS  Google Scholar 

  10. Zare RN, Kim S. Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng. 2010;12:187–201.

    Article  CAS  Google Scholar 

  11. Yin H, Marshall D. Microfluidics for single cell analysis. Curr Opin Biotechnol. 2012;23(1):110–9.

    Article  CAS  Google Scholar 

  12. Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, et al. Microfluidic device for single-cell analysis. Anal Chem. 2003;75(14):3581–6.

    Article  CAS  Google Scholar 

  13. Mittal N, Rosenthal A, Voldman J. nDEP microwells for single-cell patterning in physiological media. Lab Chip. 2007;7(9):1146–53.

    Article  CAS  Google Scholar 

  14. Kim SH, Yamamoto T, Fourmy D, Fujii T. Electroactive microwell arrays for highly efficient single-cell trapping and analysis. Small. 2011;7(22):3239–47.

    Article  CAS  Google Scholar 

  15. Eyer K, Kuhn P, Hanke C, Dittrich PS. A microchamber array for single cell isolation and analysis of intracellular biomolecules. Lab Chip. 2012;12(4):765–72.

    Article  CAS  Google Scholar 

  16. Huang KW, Wu YC, Lee JA, Chiou PY. Microfluidic integrated optoelectronic tweezers for single-cell preparation and analysis. Lab Chip. 2013;13(18):3721–7.

    Article  CAS  Google Scholar 

  17. Gerhardt T, Woo S, Ma H. Chromatographic behaviour of single cells in a microchannel with dynamic geometry. Lab Chip. 2011;11(16):2731–7.

    Article  CAS  Google Scholar 

  18. Ji HM, Samper V, Chen Y, Heng CK, Lim TM, Yobas L. Silicon-based microfilters for whole blood cell separation. Biomed Microdevices. 2008;10(2):251–7.

    Article  Google Scholar 

  19. Cheng SB, Xie M, Xu JQ, Wang J, Lv SW, Guo S, et al. High-efficiency capture of individual and cluster of circulating tumor cells by a microchip embedded with three-dimensional poly(dimethylsiloxane) scaffold. Anal Chem. 2016;88(13):6773–80.

    Article  CAS  Google Scholar 

  20. Saliba AE, Saias L, Psychari E, Minc N, Simon D, Bidard FC, et al. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci U S A. 2010;107(33):14524–9.

    Article  CAS  Google Scholar 

  21. Yu Z, Zhou L, Zhang T, Shen R, Li C, Fang X, et al. Sensitive detection of MMP9 enzymatic activities in single cell-encapsulated microdroplets as an assay of cancer cell invasiveness. ACS Sens. 2017;2(5):626–34.

    Article  CAS  Google Scholar 

  22. Schneider T, Kreutz J, Chiu DT. The potential impact of droplet microfluidics in biology. Anal Chem. 2013;85(7):3476–82.

    Article  CAS  Google Scholar 

  23. Jimenez-Valdes RJ, Rodriguez-Moncayo R, Cedillo-Alcantar DF, Garcia-Cordero JL. Massive parallel analysis of single cells in an integrated microfluidic platform. Anal Chem. 2017;89(10):5210–20.

    Article  CAS  Google Scholar 

  24. Cetin B, Li D. Dielectrophoresis in microfluidics technology. Electrophoresis. 2011;32(18):2410–27.

    Article  CAS  Google Scholar 

  25. Pethig R. Review article—dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics. 2010;4(2):022811.

    Article  Google Scholar 

  26. Gascoyne PR, Shim S. Isolation of circulating tumor cells by dielectrophoresis. Cancers (Basel). 2014;6(1):545–79.

    Article  Google Scholar 

  27. Gupta V, Jafferji I, Garza M, Melnikova VO, Hasegawa DK, Pethig R, et al. ApoStream, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics. 2012;6(2):24133.

    Article  Google Scholar 

  28. Kung YC, Huang KW, Chong W, Chiou PY. Tunnel dielectrophoresis for tunable, single-stream cell focusing in physiological buffers in high-speed microfluidic flows. Small. 2016;12(32):4343–8.

    Article  CAS  Google Scholar 

  29. Jin C, McFaul SM, Duffy SP, Deng X, Tavassoli P, Black PC, et al. Technologies for label-free separation of circulating tumor cells: from historical foundations to recent developments. Lab Chip. 2014;14(1):32–44.

    Article  CAS  Google Scholar 

  30. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HT, Lee W, et al. Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem. 2010;397(8):3249–67.

    Article  CAS  Google Scholar 

  31. Gascoyne PR, Noshari J, Anderson TJ, Becker FF. Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis. 2009;30(8):1388–98.

    Article  CAS  Google Scholar 

  32. Henslee EA, Sano MB, Rojas AD, Schmelz EM, Davalos RV. Selective concentration of human cancer cells using contactless dielectrophoresis. Electrophoresis. 2011;32(18):2523–9.

    Article  CAS  Google Scholar 

  33. Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta. 2017;966:11–33.

    Article  CAS  Google Scholar 

  34. Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K. Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron. 2011;26(5):1800–14.

    Article  CAS  Google Scholar 

  35. Gagnon ZR. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis. 2011;32(18):2466–87.

    Article  CAS  Google Scholar 

  36. Zhang C, Khoshmanesh K, Mitchell A, Kalantar-Zadeh K. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem. 2010;396(1):401–20.

    Article  CAS  Google Scholar 

  37. Albrecht DR, Underhill GH, Mendelson A, Bhatia SN. Multiphase electropatterning of cells and biomaterials. Lab Chip. 2007;7(6):702–9.

    Article  CAS  Google Scholar 

  38. Srivastava SK, Gencoglu A, Minerick AR. DC insulator dielectrophoretic applications in microdevice technology: a review. Anal Bioanal Chem. 2011;399(1):301–21.

    Article  CAS  Google Scholar 

  39. Shafiee H, Caldwell JL, Sano MB, Davalos RV. Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices. 2009;11(5):997–1006.

    Article  CAS  Google Scholar 

  40. Shim S, Stemke-Hale K, Tsimberidou AM, Noshari J, Anderson TE, Gascoyne PR. Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics. 2013;7(1):11807.

    Article  Google Scholar 

  41. Vykoukal J, Vykoukal DM, Freyberg S, Alt EU, Gascoyne PR. Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation. Lab Chip. 2008;8(8):1386–93.

    Article  CAS  Google Scholar 

  42. Cemazar J, Douglas TA, Schmelz EM, Davalos RV. Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures. Biomicrofluidics. 2016;10(1):014109.

    Article  Google Scholar 

  43. Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RV. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip. 2010;10(4):438–45.

    Article  CAS  Google Scholar 

  44. Pohl HA. The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys. 1951;22(7):869–71.

    Article  CAS  Google Scholar 

  45. Hughes MP. Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis. 2002;23(16):2569–82.

    Article  CAS  Google Scholar 

  46. Gascoyne PR, Vykoukal J. Particle separation by dielectrophoresis. Electrophoresis. 2002;23(13):1973–83.

    Article  CAS  Google Scholar 

  47. MacDonald BD, Gong MM, Zhang P, Sinton D. Out-of-plane ion concentration polarization for scalable water desalination. Lab Chip. 2014;14(4):681–5.

    Article  CAS  Google Scholar 

  48. Takei K, Kawashima T, Kawano T, Kaneko H, Sawada K, Ishida M. Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test. Biomed Microdevices. 2009;11(3):539–45.

    Article  CAS  Google Scholar 

  49. Guerrette JP, Percival SJ, Zhang B. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity. J Am Chem Soc. 2013;135(2):855–61.

    Article  CAS  Google Scholar 

  50. Marchalot J, Chateaux JF, Faivre M, Mertani HC, Ferrigno R, Deman AL. Dielectrophoretic capture of low abundance cell population using thick electrodes. Biomicrofluidics. 2015;9(5):054104.

    Article  Google Scholar 

  51. Martinez-Duarte R, Renaud P, Madou MJ. A novel approach to dielectrophoresis using carbon electrodes. Electrophoresis. 2011;32(17):2385–92.

    CAS  Google Scholar 

  52. Martinez-Duarte R, Camacho-Alanis F, Renaud P, Ros A. Dielectrophoresis of lambda-DNA using 3D carbon electrodes. Electrophoresis. 2013;34(7):1113–22.

    Article  CAS  Google Scholar 

  53. Mernier G, Martinez-Duarte R, Lehal R, Radtke F, Renaud P. Very high throughput electrical cell lysis and extraction of intracellular compounds using 3D carbon electrodes in lab-on-a-chip devices. Micromachines. 2012;3(3):574–81.

    Article  Google Scholar 

  54. Islam M, Natu R, Larraga-Martinez MF, Martinez-Duarte R. Enrichment of diluted cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis. Biomicrofluidics. 2016;10(3):033107.

    Article  Google Scholar 

  55. Zhu H, Lin X, Su Y, Dong H, Wu J. Screen-printed microfluidic dielectrophoresis chip for cell separation. Biosens Bioelectron. 2015;63:371–8.

    Article  CAS  Google Scholar 

  56. Li M, Anand RK. High-throughput selective capture of single circulating tumor cells by dielectrophoresis at a wireless electrode array. J Am Chem Soc. 2017;139(26):8950–9.

    Article  CAS  Google Scholar 

  57. Miller MC, Doyle GV, Terstappen LW. Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J Oncol. 2010;2010:617421.

    Article  Google Scholar 

  58. Lee WC, Rigante S, Pisano AP, Kuypers FA. Large-scale arrays of picolitre chambers for single-cell analysis of large cell populations. Lab Chip. 2010;10(21):2952–8.

    Article  CAS  Google Scholar 

  59. Rettig JR, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem. 2005;77(17):5628–34.

    Article  CAS  Google Scholar 

  60. Figueroa XA, Cooksey GA, Votaw SV, Horowitz LF, Folch A. Large-scale investigation of the olfactory receptor space using a microfluidic microwell array. Lab Chip. 2010;10(9):1120–7.

    Article  CAS  Google Scholar 

  61. Eyer K, Stratz S, Kuhn P, Kuster SK, Dittrich PS. Implementing enzyme-linked immunosorbent assays on a microfluidic chip to quantify intracellular molecules in single cells. Anal Chem. 2013;85(6):3280–7.

    Article  CAS  Google Scholar 

  62. Di Carlo D, Wu LY, Lee LP. Dynamic single cell culture array. Lab Chip. 2006;6(11):1445–9.

    Article  Google Scholar 

  63. Di Carlo D, Aghdam N, Lee LP. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem. 2006;78(14):4925–30.

    Article  Google Scholar 

  64. Kim SH, He X, Kaneda S, Kawada J, Fourmy D, Noji H, et al. Quantifying genetically inserted fluorescent protein in single iPS cells to monitor Nanog expression using electroactive microchamber arrays. Lab Chip. 2014;14(4):730–6.

    Article  CAS  Google Scholar 

  65. Kim SH, Fujii T. Efficient analysis of a small number of cancer cells at the single-cell level using an electroactive double-well array. Lab Chip. 2016;16(13):2440–9.

    Article  CAS  Google Scholar 

  66. Kobayashi M, Kim SH, Nakamura H, Kaneda S, Fujii T. Cancer cell analyses at the single cell-level using electroactive microwell array device. PLoS One. 2015;10(11):e0139980.

    Article  Google Scholar 

  67. Khamenehfar A, Gandhi MK, Chen Y, Hogge DE, Li PC. Dielectrophoretic microfluidic chip enables single-cell measurements for multidrug resistance in heterogeneous acute myeloid leukemia patient samples. Anal Chem. 2016;88(11):5680–8.

    Article  CAS  Google Scholar 

  68. Ho CT, Lin RZ, Chang WY, Chang HY, Liu CH. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip. 2006;6(6):724–34.

    Article  CAS  Google Scholar 

  69. Lin RZ, Ho CT, Liu CH, Chang HY. Dielectrophoresis based-cell patterning for tissue engineering. Biotechnol J. 2006;1(9):949–57.

    Article  CAS  Google Scholar 

  70. Nestor BA, Samiei E, Samanipour R, Gupta A, Van den Berg A, Derby MDD, et al. Digital microfluidic platform for dielectrophoretic patterning of cells encapsulated in hydrogel droplets. RSC Adv. 2016;6(62):S7409–16.

    Article  Google Scholar 

  71. Hatch AC, Fisher JS, Tovar AR, Hsieh AT, Lin R, Pentoney SL, et al. 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip. 2011;11(22):3838–45.

    Article  CAS  Google Scholar 

  72. Zhang P, Ren L, Zhang X, Shan Y, Wang Y, Ji Y, et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem. 2015;87(4):2282–9.

    Article  CAS  Google Scholar 

  73. Krafft C, Schie IW, Meyer T, Schmitt M, Popp J. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem Soc Rev. 2016;45(7):1819–49.

    Article  CAS  Google Scholar 

  74. Hanson C, Vargis E. Alternative cDEP design to facilitate cell isolation for identification by Raman spectroscopy. Sensors (Basel). 2017;17(2):327.

    Article  Google Scholar 

  75. Moon HS, Kwon K, Kim SI, Han H, Sohn J, Lee S, et al. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip. 2011;11(6):1118–25.

    Article  CAS  Google Scholar 

  76. Antfolk M, Magnusson C, Augustsson P, Lilja H, Laurell T. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal Chem. 2015;87(18):9322–8.

    Article  CAS  Google Scholar 

  77. Kim SH, Antfolk M, Kobayashi M, Kaneda S, Laurell T, Fujii T. Highly efficient single cell arraying by integrating acoustophoretic cell pre-concentration and dielectrophoretic cell trapping. Lab Chip. 2015;15(22):4356–63.

    Article  CAS  Google Scholar 

  78. Antfolk M, Kim SH, Koizumi S, Fujii T, Laurell T. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system. Sci Rep. 2017;7:46507.

    Article  CAS  Google Scholar 

  79. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904.

    Article  Google Scholar 

  80. Chen X, Ren Y, Liu W, Feng X, Jia Y, Tao Y, et al. A simplified microfluidic device for particle separation with two consecutive steps: induced charge electro-osmotic prefocusing and dielectrophoretic separation. Anal Chem. 2017;89(17):9583–92.

    Article  CAS  Google Scholar 

  81. Ramos A, Morgan H, Green NG, Castellanos A. AC electric-field-induced fluid flow in microelectrodes. J Colloid Interface Sci. 1999;217(2):420–2.

    Article  CAS  Google Scholar 

  82. Green NG, Ramos A, Gonzalez A, Morgan H, Castellanos A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;61(4 Pt B):4011–8.

    CAS  Google Scholar 

  83. Gonzalez A, Ramos A, Green NG, Castellanos A, Morgan H. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;61(4 Pt B):4019–28.

    CAS  Google Scholar 

  84. Green NG, Ramos A, Gonzalez A, Morgan H, Castellanos A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66(2 Pt 2):026305.

    Article  CAS  Google Scholar 

  85. Wu J, Ben YX, Battigelli D, Chang HC. Long-range AC electroosmotic trapping and detection of bioparticles. Ind Eng Chem Res. 2005;44(8):2815–22.

    Article  CAS  Google Scholar 

  86. Wu J, Ben YX, Chang HC. Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping. Microfluid Nanofluid. 2005;1(2):161–7.

    Article  Google Scholar 

  87. D'Amico L, Ajami NJ, Adachi JA, Gascoyne PR, Petrosino JF. Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab Chip. 2017;17(7):1340–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbyn K. Anand.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Anand, R.K. Cellular dielectrophoresis coupled with single-cell analysis. Anal Bioanal Chem 410, 2499–2515 (2018). https://doi.org/10.1007/s00216-018-0896-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0896-y

Keywords

Navigation