Skip to main content
Log in

Multiplex highly sensitive immunochromatographic assay based on the use of nonprocessed antisera

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The format of an immunochromatographic multiassay is first proposed with native antisera and a universal conjugate of antispecies antibodies with gold nanoparticles. This format allows (1) the exclusion of purification and conjugation stages for specific antibodies and (2) significant reduction of the concentration of specific antibodies in the system. The independent use of specific antibodies and a conjugated marker provided a low detection limit and high signal intensity. The proposed format was implemented for the simultaneous detection of two herbicides. The instrumental limits for the detection of atrazine and chlorsulfuron were 0.1 and 0.7 ng/mL, respectively, and the analysis time was 20 min. The suitability of the test system for monitoring these herbicides in nontreated apple and blackcurrant juices is shown. The assay technique is simple, sensitive, and easily transferrable to any other antigen.

The proposed format of the immunochromatographic multiassay is based on the use of native antisera and a universal conjugate of antispecies antibodies with gold nanoparticles. In this way purification and conjugation stages for specific antibodies are excluded, and the concentrations of specific antibodies and the conjugated marker can be varied independently to obtain a low detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Posthuma-Trumpie G, Korf J, van Amerongen A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–82.

    Article  CAS  Google Scholar 

  2. Wong RC, Tse HY. Lateral flow immunoassay. New York: Humana; 2009. p. 224.

    Book  Google Scholar 

  3. Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. Immunochromatographic methods in food analysis. Trends Anal Chem. 2014;55:81–93.

    Article  CAS  Google Scholar 

  4. Chandler J, Gurmin T, Robinson N. The place of gold in rapid tests. IVD Technol. 2000;6:37–49.

    Google Scholar 

  5. Ivanova JL, Edelweiss EF, Leonova OG, Balandin TG, Popenko VI, Deyev SM. Application of fusion protein 4D5 scFv-dibarnase: barstar–gold complex for studying P185 HER2 receptor distribution in human cancer cells. Biochimie. 2012;94(8):1833–6.

    Article  CAS  Google Scholar 

  6. Byzova NA, Zherdev AV, Sveshnikov PG, Sadykhov EG, Dzantiev BB. Development of an immunochromatographic test system for the detection of Helicobacter pylori antigens. Appl BiochemMicrobiol. 2015;51(5):608–17.

    CAS  Google Scholar 

  7. Bradbury A, Plückthun A. Reproducibility: standardize antibodies used in research. Nature. 2015;518:27–9.

    Article  CAS  Google Scholar 

  8. Polakiewicz RD. Antibodies: the solution is validation. Nature. 2015;518(7540):483.

    Article  CAS  Google Scholar 

  9. Weller MG. Quality issues of research antibodies. Anal Chem Insights. 2016;11:21–7.

    Article  Google Scholar 

  10. Josic D, Lim Y-P. Analytical and preparative methods for purification of antibodies. Food Technol Biotechnol. 2001;39(3):215–26.

    CAS  Google Scholar 

  11. Urusov AE, Zherdev AV, Dzantiev BB. Use of gold nanoparticle-labeled secondary antibodies to improve the sensitivity of an immunochromatographic assay for aflatoxin B1. Microchim Acta. 2014;181(15-16):1939–46.

    Article  CAS  Google Scholar 

  12. Urusov AE, Petrakova AV, Zherdev AV, Dzantiev BB. “Multistage in one touch” design with a universal labeling conjugate for high-sensitive lateral flow immunoassays. Biosens Bioelectron. 2016;86:575–9.

    Article  CAS  Google Scholar 

  13. Burgos NR, Tranel PJ, Streibig JC, Davis VM, Shaner D, Norsworthy JK, et al. Review: confirmation of resistance to herbicides and evaluation of resistance levels. Weed Sci. 2013;61(1):4–20.

    Article  CAS  Google Scholar 

  14. Mudhoo A, Garg VK. Sorption, transport and transformation of atrazine in soils, minerals and composts: a review. Pedosphere. 2011;21(1):11–25.

    Article  CAS  Google Scholar 

  15. Boffetta P, Adami HO, Berry SC, Mandel JS. Atrazine and cancer: a review of the epidemiologic evidence. Eur J Cancer Prev. 2013;22(2):169–80.

    Article  CAS  Google Scholar 

  16. Yazynina EV, Zherdev AV, Dzantiev BB, Izumrudov VA, Gee SJ, Hammock BD. Microplate immunoassay technique using polyelectrolyte carriers: kinetic studies and application to detection of the herbicide atrazine. Anal Chim Acta. 1999;399(1):151–60.

    Article  CAS  Google Scholar 

  17. Yazynina EV, Zherdev AV, Eremin SA, Popova VA, Dzantiev BB. Development of enzyme immunoassays for the herbicide chlorsulfuron. Appl BiochemMicrobiol. 2002;38(1):9–14.

    CAS  Google Scholar 

  18. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241(105):20–2.

    Article  CAS  Google Scholar 

  19. Byzova NA, Zvereva EA, Zherdev AV, Eremin SA, Dzantiev BB. Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta. 2010;81(3):843–8.

    Article  CAS  Google Scholar 

  20. Hermanson GT. Preparation of colloidal gold-labeled proteins. In: Hermanson GT, editor. Bioconjugate techniques. 3rd ed. Boston: Academic; 2013. p. 924–35.

    Google Scholar 

  21. Sotnikov DV, Byzova NA, Zherdev AV, Eskendirova SZ, Baltin KK, Mukanov KK, et al. Express immunochromatographic detection of antibodies against Brucella abortus in cattle sera based on quantitative photometric registration and modulated cut-off level. J Immunoassay Immunochem. 2015;36(1):80–90.

    Article  CAS  Google Scholar 

  22. Urusov AE, Kostenko SN, Sveshnikov PG, Zherdev AV, Dzantiev BB. Ochratoxin A immunoassay with surface plasmon resonance registration: lowering limit of detection by the use of colloidal gold immunoconjugates. Sens Actuators B. 2011;156(1):343–9.

    Article  CAS  Google Scholar 

  23. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    Article  CAS  Google Scholar 

  24. Wang S, Quan Y, Lee N, Kennedy IR. Rapid determination of fumonisin B1 in food samples by enzyme-linked immunosorbent assay and colloidal gold immunoassay. J Agric Food Chem. 2006;54(7):2491–5.

    Article  CAS  Google Scholar 

  25. Yang H, Li D, He R, Guo Q, Wang K, Zhang X, et al. A novel quantum dots-based point of care test for syphilis. Nanoscale Res Lett. 2010;5(5):875–81.

    Article  CAS  Google Scholar 

  26. Chuanlai X, Huting W, Chifang P, Zhengyu J, Liqiang L. Colloidal gold-based immumochromatographic assay for detection of diethylstilbestrol residues. Biomed Chromatogr. 2006;20(12):1390–4.

    Article  Google Scholar 

  27. Kaur J, Singh KV, Boro R, Thampi KR, Raje M, Varshney GC, et al. Immunochromatographic dipstick assay format using gold nanoparticles labeled protein−hapten conjugate for the detection of atrazine. Envir Sci Technol. 2007;41(14):5028–36.

    Article  CAS  Google Scholar 

  28. Byzova NA, Zherdev AV, Zvereva EA, Dzantiev BB. Immunochromatographic assay with photometric detection for rapid determination of the herbicide atrazine and other triazines in foodstuffs. J AOAC Int. 2010;93(1):36–43.

    CAS  Google Scholar 

  29. Miocevic O, Cole CR, Laughlin MJ, Buck RL, Slowey PD, Shirtcliff EA. Quantitative lateral flow assays for salivary biomarker assessment: a review. Front Public Health. 2017;5:133.

    Article  Google Scholar 

  30. Masiri J, Benoit L, Thienes C, Kainrath C, Barrios-Lopez B, Agapov A, et al. A rapid, semi-quantitative test for detection of raw and cooked horse meat residues. Food Control. 2017;76:102–7.

    Article  CAS  Google Scholar 

  31. Galan-Malo P, Lopez M, Ortiz JC, Perez MD, Sanchez L, Razquin P, et al. Detection of egg and milk residues on working surfaces by ELISA and lateral flow immunoassay tests. Food Control. 2017;74:45–53.

    Article  CAS  Google Scholar 

  32. Li Y, Liu L, Song S, Kuang H. Development of a gold nanoparticle immunochromatographic assay for the on-site analysis of 6-benzylaminopurine residues in bean sprouts. Food Agric Immunol. 2017; https://doi.org/10.1080/09540105.2017.1354359.

  33. Wang Z, Zheng Q, Guo L, Suryoprabowo S, Liu L, Kuang H. Preparation of an anti-dexamethasone monoclonal antibody and its use in development of a colloidal gold immunoassay. Food AgricImmunol. 2017;28(6):958–68.

    Google Scholar 

  34. Liang Q, Yi C, Jiang L, Tan G, Zhang C, Wang B. Development of a lateral flow dipstick immunoassay for evaluation of folate levels in maize. Anal Bioanal Chem. 2017;409(24):5655–60.

    Article  CAS  Google Scholar 

  35. Goryacheva IY, Lenain P, De Saeger S. Nanosized labels for rapid immunotests. Trends Anal Chem. 2013;46:30–43.

    Article  CAS  Google Scholar 

  36. Gong X, Cai J, Zhang B, Zhao Q, Piao J, Peng W, et al. A review of fluorescent signal-based lateral flow immunochromatographic strips. J Mater Chem B. 2017;5(26):5079–91.

    Article  CAS  Google Scholar 

  37. Paterson AS, Raja B, Mandadi V, Townsend B, Lee M, Buel A, et al. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors. Lab Chip. 2017;17(6):1051–9.

    Article  CAS  Google Scholar 

  38. Connolly R, O'Kennedy R. Magnetic lateral flow immunoassay test strip development – Considerations for proof of concept evaluation. Methods. 2017;116:132–40.

    Article  CAS  Google Scholar 

  39. Sanchez-Purra M, Roig-Solvas B, Versiani A, Rodriguez-Quijada C, de Puig H, Bosch I, et al. Design of SERS nanotags for multiplexed lateral flow immunoassays. Mol Syst Des Eng. 2017;2(4):401–9.

    Article  CAS  Google Scholar 

  40. Wang L, Qian C, Qian W, Wang R, Wu J, Ying Y. A highly specific strategy for in suit detection of DNA with nicking enzyme assisted amplification and lateral flow. Sens Actuators B. 2017;253:258–65.

    Article  CAS  Google Scholar 

  41. Zhong Y, Chen Y, Yao L, Zhao D, Zheng L, Liu G, et al. Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening. Microchim Acta. 2016;183(6):1989–94.

    Article  CAS  Google Scholar 

  42. Rodriguez MO, Covian LB, Garcia AC, Blanco-Lopez MC. Silver and gold enhancement methods for lateral flow immunoassays. Talanta. 2016;148:272–8.

    Article  CAS  Google Scholar 

  43. Cho IH, Bhunia A, Irudayaraj J. Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification. Int J Food Microbiol. 2015;206:60–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to S.M. Pridvorova (A.N. Bach Institute of Biochemistry) for the transmission electron microscopy measurements and data processing. This research was financially supported by the Russian Science Foundation (grant 14-16-00149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Dzantiev.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

The studies did not involve human participants or animals.

Electronic supplementary material

ESM 1

(PDF 463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byzova, N.A., Urusov, A.E., Zherdev, A.V. et al. Multiplex highly sensitive immunochromatographic assay based on the use of nonprocessed antisera. Anal Bioanal Chem 410, 1903–1910 (2018). https://doi.org/10.1007/s00216-018-0853-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0853-9

Keywords

Navigation