Skip to main content
Log in

Silver nanoflowers-enhanced Tb(III)/La(III) co-luminescence for the sensitive detection of dopamine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive fluorescent analytical method for the detection of dopamine (DA) was developed based on surface-enhanced Tb(III)/La(III) co-luminescence using silver nanoflowers (AgNFs). Anisotropic AgNFs show strong surface-enhanced fluorescence effect owing to the abundant sharp tips. Tb(III)/La(III)-DA complexes mainly bind to the sharp tips of AgNFs and thus shorten the distance between the complexes. The shortened distance gives rise to obvious surface-enhanced Tb(III)/La(III) co-luminescence effect. In this work, AgNFs offer many superior properties, such as enhanced intrinsic green fluorescence of Tb(III) (λex/λem = 310/546 nm), increased fluorescence lifetime, and improved energy transfer efficiency. Under the optimum conditions, the fluorescence intensity is linearly correlated with the concentration of DA in the range of 0.80–10 nM (R2 = 0.9970), and the detection limit is 0.34 nM (S/N = 3). The fluorescent nanoprobe was successfully applied to the determination of DA in human serum samples with recoveries ranging from 99.1 to 102.6%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dong J, Qu SX, Zheng HR, Zhang ZL, Li JN, Huo YP, et al. Simultaneous SEF and SERRS from silver fractal-like nanostructure. Sensors Actuators B Chem. 2014;191:595–9.

    Article  CAS  Google Scholar 

  2. Zhang J, Fu Y, Chowdhury MH, Lakowicz JR. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimmer: coupling effect between metal particles. Nano Lett. 2007;7(7):2101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wei X, Li H, Li ZH, Vuki M, Fan Y, Zhong WY, et al. Metal-enhanced fluorescent probes based on silver nanoparticles and its application in IgE detection. Anal Bioanal Chem. 2012;402(3):1057–63.

    Article  CAS  PubMed  Google Scholar 

  4. Xie F, Pang JS, Centeno A, Ryan MP, Riley DJ, Alford NM. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res. 2013;6(7):496–510.

    Article  CAS  Google Scholar 

  5. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824–30.

    Article  CAS  PubMed  Google Scholar 

  6. Buch Z, Kumar V, Mamgain H, Chawla S. Silver nanoprisms acting as multipolar nano antennas under low intensity infrared optical field excites fluorescence from Eu3+. J Phys Chem Lett. 2013;4(22):3834–8.

    Article  CAS  Google Scholar 

  7. Dong J, Zheng HR, Yan XQ, Sun Y, Zhang ZL. Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence. Appl Phys Lett. 2012;100:051112.

    Article  CAS  Google Scholar 

  8. Chen HD, Xia YS. Compact hybrid (gold nanodendrite-quantum dots) assembly: plasmon enhanced fluorescence-based platform for small molecule sensing in solution. Anal Chem. 2014;86(22):11062–9.

    Article  CAS  PubMed  Google Scholar 

  9. Ma N, Tang F, Wang XY, He F, Li LD. Tunable metal-enhanced fluorescence by stimuli-responsive polyelectrolyte interlayer films. Macromol Rapid Commun. 2011;32(7):587–92.

    Article  CAS  PubMed  Google Scholar 

  10. Villalba RM, Smith Y. Differential striatal spine pathology in Parkinson’s disease and cocaine addiction: a key role of dopamine? Neuroscience. 2013;251:2–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deb A, Frank S, Testa CM. New symptomatic therapies for Huntington disease. Handb Clin Neurol. 2017;144:199–207.

    Article  PubMed  Google Scholar 

  12. Goldstein DS, Kopin IJ, Sharabi Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther. 2014;44(3):268–82.

    Article  CAS  Google Scholar 

  13. Kanamori T, Funatsu T, Tsunoda M. Determination of catecholamines and related compounds in mouse urine using column-switching HPLC. Analyst. 2016;141(8):2568–73.

    Article  CAS  Google Scholar 

  14. Khoobi A, Ghoreishi SM, Behpour M, Masoum S. Three-dimensional voltammetry: a chemometrical analysis of electrochemical data for determination of dopamine in the presence of unexpected interference by a biosensor based on gold nanoparticles. Anal Chem. 2014;86(18):8967–73.

    Article  CAS  PubMed  Google Scholar 

  15. Kanyong P, Rawlinson S, Davis J. Simultaneous electrochemical determination of dopamine and 5-hydroxyindoleacetic acid in urine using a screen-printed graphite electrode modified with gold nanoparticles. Anal Bioanal Chem. 2016. https://doi.org/10.1007/s00216-016-9351-0.

  16. Xu Y, Hun X, Liu F, Wen X, Luo X. Aptamer biosensor for dopamine based on a gold electrode modified with carbon nanoparticles and thionine labeled gold nanoparticles as probe. Microchim Acta. 2015;182(9):1797–802.

    Article  CAS  Google Scholar 

  17. Wen D, Liu W, Herrmann AK, Haubold D, Holzschuh M, Simon F, et al. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles. Small. 2016;12(18):2439–42.

    Article  CAS  PubMed  Google Scholar 

  18. Zeng ZH, Cui B, Wang Y, Sun C, Zhao X, Cui H. Dual reaction-based multimodal assay for dopamine with high sensitivity and selectivity using functionalized gold nanoparticles. ACS Appl Mater Interfaces. 2015;7(30):16518–24.

    Article  CAS  PubMed  Google Scholar 

  19. Qian CG, Zhu S, Feng PJ, Chen YL, Yu JC, Tang X, et al. Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of zebrafish larvae. ACS Appl Mater Interfaces. 2015;7(33):18581–9.

    Article  CAS  PubMed  Google Scholar 

  20. Xu BB, Su YY, Li L, Liu R, Lv Y. Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sensors Actuators B Chem. 2017;246:380–8.

    Article  CAS  Google Scholar 

  21. Kim MJ, Jeon SJ, Kang TW, Ju JM, Yim DB, Kim HI, et al. 2H-WS2 quantum dots produced by modulating the dimension and phase of 1T-Nanosheets for antibody-free optical sensing of neurotransmitters. ACS Appl Mater Interfaces. 2017;9(14):12316–23.

    Article  CAS  PubMed  Google Scholar 

  22. Guo X, Wu F, Ni Y, Kokot S. Synthesizing a nano-composite of BSA-capped Au nanoclusters/graphitic carbon nitride nanosheets as a new fluorescent probe for dopamine detection. Anal Chim Acta. 2016;942:112–20.

    Article  CAS  PubMed  Google Scholar 

  23. Wang B, Chen MM, Zhang HQ, Wen W, Zhang XH, Wang SF. A simple and sensitive fluorometric dopamine assay based on silica-coated CdTe quantum dots. Microchim Acta. 2017;184(9):3189–96.

    Article  CAS  Google Scholar 

  24. Alam AM, Kamruzzaman M, Lee SH, Kim YH, Kim SY, Kim GM, et al. Determination of catecholamines based on the measurement of the metal nanoparticle-enhanced fluorescence of their terbium complexes. Microchim Acta. 2012;176(1–2):153–61.

    Article  CAS  Google Scholar 

  25. Li HH, Wu X. Silver nanoparticles-enhanced rare earth co-luminescence effect of Tb (III)-Y (III)-dopamine system. Talanta. 2015;138:203–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lian N, Tang JH, He XH, Li WH, Zhang GH. Sensitive detection of dopamine using micelle-enhanced and terbiumsensitized fluorescence. Anal Chem. 2016;71(7):653–9.

    Article  CAS  Google Scholar 

  27. Lu L, Kobayashi A, Tawa K, Ozaki Y. Silver nanoplates with special shapes: controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties. Chem Mater. 2006;18(20):4894–901.

    Article  CAS  Google Scholar 

  28. Li HH, Shen J, Cui RW, Sun CM, Zhao YY, Wu X, et al. A highly selective and sensitive fluorescent nanosensor for dopamine based on formate bridged Tb (III) complex and silver nanoparticles. Analyst. 2017;142:4240–6.

    Article  CAS  PubMed  Google Scholar 

  29. Corona-Avendaño S, Alarcón-Angeles G, Rosquete-Pina GA, Rojas-Hernández A, Gutierrez A, Ramírez-Silva MT, et al. New insights on the nature of the chemical species involved during the process of dopamine deprotonation in aqueous solution: theoretical and experimental study. J Phys Chem B. 2007;111(7):1640–7.

    Article  CAS  PubMed  Google Scholar 

  30. Fang JX, Yi Y, Ding BJ, Song XP. A route to increase the enhancement factor of surface enhanced Raman scattering (SERS) via a high density Ag flower-like pattern. Appl Phys Lett. 2008;92(13):131115.

    Article  CAS  Google Scholar 

  31. Kumar KN, Babu BC, Buddhudu S. Energy transfer based photoluminescence spectra of (Tb3++Sm3+): PEO+PVP polymer nano-composites with Ag nano-particles. J Lumin. 2015;161:456–64.

    Article  CAS  Google Scholar 

  32. Qi Y, Zhao F, Xie X, Xu X, Ma Z. Study on the cofluorescence effect of europium (III)–yttrium (III)–balofloxacin–sodium dodecyl sulfate system and its analytical application. Spectrosc Lett. 2015;48(5):311–6.

    Article  CAS  Google Scholar 

  33. Lin CG, Yang JH, Wu X, Zhang GL, Liu RT, Cao XH, et al. Enhanced fluorescence of the terbium-gadolinium-nucleic acids system and the determination of nucleic acids. Anal Chim Acta. 2000;403(1):219–24.

    Article  CAS  Google Scholar 

  34. Oliveira E, Santos HM, Capelo JL, Lodeiro C. New emissive dopamine derivatives as fluorescent chemosensors for metal ions: a CHEF effect for Al (III) interaction. Inorg Chim Acta. 2012;381(1):203–11.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (No. 21545001) and Shandong Provincial Natural Science Foundation, China (No. ZR2018MB031). The authors gratefully acknoweledge Prof. Xiaowen Che from the Second Hospital of Shandong University for her help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the ethics committee of the Second Hospital of Shandong University and was performed in accordance with the ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Shen, J., Cui, R. et al. Silver nanoflowers-enhanced Tb(III)/La(III) co-luminescence for the sensitive detection of dopamine. Anal Bioanal Chem 411, 1375–1381 (2019). https://doi.org/10.1007/s00216-018-01568-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-01568-2

Keywords

Navigation