Skip to main content
Log in

Confining analyte droplets on visible Si pillars for improving reproducibility and sensitivity of SALDI-TOF MS

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present a universal method to efficiently improve reproducibility and sensitivity of surface-assisted laser desorption/ionization time of flight mass spectrometry (SALDI-TOF MS). In this method, the Si pillar array with unique surface wettability is used as substrate for ionizing analyte. The Si pillar is fabricated based on the combination of photolithography and metal-assisted chemical etching, which is of hydrophilic top and hydrophobic bottom and side wall. Based on the surface wettability of the Si pillar, a droplet of an aqueous analyte solution can be confined on the top of the Si pillar. After evaporation of solvent, an analyte deposition spot is formed on the top of Si pillar. The visible size of the Si pillar allows the sample spot to be easily found. Meanwhile, the diameter of the Si pillar is smaller than that of the laser, allowing the observation of all analyte molecules under one laser shot. Therefore, the reproducibility and sensitivity are highly improved with this method, which allows for the quantitative analysis. Furthermore, this method is applicable for different analytes dissolved in water, including amino acids, dye molecules, polypeptides, and polymers. The application of this substrate is demonstrated by analyzing real samples at low concentration. It should be a promising method for sensitive and reproducible detection for SALDI-TOF MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van Kampen JJA, Burgers PC, de Groot R, Gruters RA, Luider TM. Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom Rev. 2011;30:101–20.

    Article  CAS  PubMed  Google Scholar 

  2. Cho YT, Su H, Huang TL, Chen HC, Wu WJ, Wu PC, et al. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry for clinical diagnosis. Clin Chim Acta. 2013;415:266–75.

    Article  CAS  PubMed  Google Scholar 

  3. Law KP, Larkin JR. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal Bioanal Chem. 2011;399:2597–622.

    Article  CAS  PubMed  Google Scholar 

  4. Abdelhamid HN, Lin YC, Wu HF. Thymine chitosan nanomagnets for specific preconcentration of mercury(II) prior to analysis using SELDI-MS. Microchim Acta. 2017;184:1517–27.

    Article  CAS  Google Scholar 

  5. Guinan T, Ronci M, Vasani R, Kobus H, Voelcker NH. Comparison of the performance of different silicon-based SALDI substrates for illicit drug detection. Talanta. 2015;132:494–502.

    Article  CAS  PubMed  Google Scholar 

  6. Abdelhamid HN. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim Acta. 2018;185:200.

    Article  CAS  Google Scholar 

  7. Silina YE, Volmer DA. Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds. Analyst. 2013;138:7053–65.

    Article  CAS  PubMed  Google Scholar 

  8. Shi CY, Deng CH, Zhang XM, Yang PY. Synthesis of highly water-dispersible polydopamine-modified multiwalled carbon nanotubes for matrix-assisted laser desorption/ionization mass spectrometry analysis. ACS Appl Mater Interfaces. 2013;5:7770–6.

    Article  CAS  PubMed  Google Scholar 

  9. Xu SY, Li YF, Zou HF, Qiu JS, Guo Z, Guo BC. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2003;75:6191–5.

    Article  CAS  PubMed  Google Scholar 

  10. Lai HZ, Wang SG, Wu CY, Chen YC. Detection of staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2015;87:2114–20.

    Article  CAS  PubMed  Google Scholar 

  11. Pilolli R, Ditaranto N, Di Franco C, Palmisano F, Cioffi N. Thermally annealed gold nanoparticles for surface-assisted laser desorption ionisation-mass spectrometry of low molecular weight analytes. Anal Bioanal Chem. 2012;404:1703–11.

    Article  CAS  PubMed  Google Scholar 

  12. Xu GJ, Liu SJ, Peng JX, Lv WP, Wu RA. Facile synthesis of gold@graphitized mesoporous silica nanocomposite and its surface-assisted laser desorption/ionization for time-of-flight mass spectroscopy. ACS Appl Mater Interfaces. 2015;7:2032–8.

    Article  CAS  PubMed  Google Scholar 

  13. Kim JI, Park JM, Hwang SJ, Kang MJ, Pyun JC. Top-down synthesized TiO2 nanowires as a solid matrix for surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Anal Chim Acta. 2014;836:53–60.

    Article  CAS  PubMed  Google Scholar 

  14. Popovic IA, Nesic M, Vranjes M, Saponjic Z, Petkovic M. SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates. Anal Bioanal Chem. 2016;408:7481–90.

    Article  CAS  PubMed  Google Scholar 

  15. Alhmoud HZ, Guinan TM, Elnathan R, Kobus H, Voelcker NH. Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays. Analyst. 2014;139:5999–6009.

    Article  CAS  PubMed  Google Scholar 

  16. Tsao CW, Lin YJ, Chen PY, Yang YL, Tan SH. Nanoscale silicon surface-assisted laser desorption/ionization mass spectrometry: environment stability and activation by simple vacuum oven desiccation. Analyst. 2016;141:4973–81.

    Article  CAS  PubMed  Google Scholar 

  17. Wei J, Buriak JM, Siuzdak G. Desorption-ionization mass spectrometry on porous silicon. Nature. 1999;399:243–6.

    Article  CAS  PubMed  Google Scholar 

  18. Luo GH, Chen Y, Daniels H, Dubrow R, Vertes A. Internal energy transfer in laser desorption/ionization from silicon nanowires. J Phys Chem B. 2006;110:13381–6.

    Article  CAS  PubMed  Google Scholar 

  19. Tsao CW, Yang ZJ. High sensitivity and high detection specificity of gold-nanoparticle-grafted nanostructured silicon mass spectrometry for glucose analysis. ACS Appl Mater Interfaces. 2015;7:22630–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kailasa SK, Wu HF. Surface-assisted laser desorption-ionization mass spectrometry of oligosaccharides using magnesium oxide nanoparticles as a matrix. Microchim Acta. 2013;180:405–13.

    Article  CAS  Google Scholar 

  21. Wang JP, Wang Y, Guo XH, Wang P, Zhao T, Wang JY. Matrix assisted laser desorption/ionization time-of-flight mass spectrometric determination of benzo[a] pyrene using a MIL-101(Fe) matrix. Microchim Acta. 2018;185:175.

    Article  CAS  Google Scholar 

  22. Abdelmaksoud HH, Guinan TM, Voelcker NH. Fabrication of nanostructured mesoporous germanium for application in laser desorption ionization mass spectrometry. ACS Appl Mater Interfaces. 2017;9:5092–9.

    Article  CAS  PubMed  Google Scholar 

  23. Yang M, Chen X, Jiang TJ, Guo Z, Liu JH, Huang XJ. Electrochemical detection of trace arsenic(III) by nanocomposite of nanorod-like alpha-MnO2 decorated with approximately 5 nm au nanoparticles: considering the change of arsenic speciation. Anal Chem. 2016;88:9720–8.

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Xu GJ, Zhang HY, Liu SJ, Niu H, Peng JX, et al. A homogeneous carbon nanosphere film-spot: for highly efficient laser desorption/ionization of small biomolecules. Carbon. 2017;121:343–52.

    Article  CAS  Google Scholar 

  25. Tu T, Gross ML. Miniaturizing sample spots for matrix-assisted laser desorption/ionization mass spectrometry. Trac-Trend Anal Chem. 2009;28:833–41.

    Article  CAS  Google Scholar 

  26. Herzer N, Eckardt R, Hoeppener S, Schubert US. Sample target substrates with reduced spot size for MALDI-TOF mass spectrometry based on patterned self-assembled monolayers. Adv Funct Mater. 2009;19:2777–81.

    Article  CAS  Google Scholar 

  27. Teng F, Zhu QY, Wang YL, Du J, Lu N. Enhancing reproducibility of SALDI MS detection by concentrating analytes within laser spot. Talanta. 2018;179:583–7.

    Article  CAS  PubMed  Google Scholar 

  28. Schuerenbeg M, Luebbert C, Eickhoff H, Kalkum M, Lehrach H, Nordhoff E. Prestructured MALDI-MS sample supports. Anal Chem. 2000;72:3436–42.

    Article  CAS  Google Scholar 

  29. Xu YD, Watson JT, Bruening ML. Patterned monolayer/polymer films for analysis of dilute or salt-contaminated protein samples by MALDI-MS. Anal Chem. 2003;75:185–90.

    Article  CAS  PubMed  Google Scholar 

  30. Wallace RA, Charlton JJ, Kirchner TB, Lavrik NV, Datskos PG, Sepaniak MJ. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates. Anal Chem. 2014;86:11819–25.

    Article  CAS  PubMed  Google Scholar 

  31. Cheung M, Lee WWY, McCracken JN, Larmour IA, Brennan S, Bell SEJ. Raman analysis of dilute aqueous samples by localized evaporation of submicroliter droplets on the tips of superhydrophobic copper wires. Anal Chem. 2016;88:4541–7.

    Article  CAS  PubMed  Google Scholar 

  32. Song W, Psaltis D, Crozier KB. Superhydrophobic bull's-eye for surface-enhanced Raman scattering. Lab Chip. 2014;14:3907–11.

    Article  CAS  PubMed  Google Scholar 

  33. Cheung M, Lee WW, Cowcher DP, Goodacre R, Bell SE. SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection of dipicolinic acid, an anthrax biomarker, considerably below the infective dose. Chem Commun. 2016;52:9925–8.

    Article  CAS  Google Scholar 

  34. Marinaro G, Accardo A, De Angelis F, Dane T, Weinhausen B, Burghammer M, et al. A superhydrophobic chip based on SU-8 photoresist pillars suspended on a silicon nitride membrane. Lab Chip. 2014;14:3705–9.

    Article  CAS  PubMed  Google Scholar 

  35. Coffinier Y, Kurylo I, Drobecq H, Szunerits S, Melnyk O, Zaitsev VN, et al. Decoration of silicon nanostructures with copper particles for simultaneous selective capture and mass spectrometry detection of His-tagged model peptide. Analyst. 2014;139:5155–63.

    Article  CAS  PubMed  Google Scholar 

  36. Kang MJ, Pyun JC, Lee JC, Choi YJ, Park JH, Park JG, et al. Nanowire-assisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules. Rapid Commun Mass Spectrom. 2005;19:3166–70.

    Article  CAS  Google Scholar 

  37. Kim SM, Khang DY. Bulk micromachining of Si by metal-assisted chemical etching. Small. 2014;10:3761–6.

    Article  CAS  PubMed  Google Scholar 

  38. Alderman DJ. Malachite green: a review. J Fish Dis. 1985;8:289–98.

    Article  CAS  Google Scholar 

  39. Hall Z, Hopley C, O'Connor G. High accuracy determination of malachite green and leucomalachite green in salmon tissue by exact matching isotope dilution mass spectrometry. J Chromatogr B. 2008;874:95–100.

    Article  CAS  Google Scholar 

  40. Iores-Marçal LM, Viel TA, Buck HS, Nunes VA, Gozzo AJ, Cruz-Silva I, et al. Bradykinin release and inactivation in brain of rats submitted to an experimental model of Alzheimer's disease. Peptides. 2006;27:3363–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21673096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 10182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Teng, F., Wang, Z. et al. Confining analyte droplets on visible Si pillars for improving reproducibility and sensitivity of SALDI-TOF MS. Anal Bioanal Chem 411, 1135–1142 (2019). https://doi.org/10.1007/s00216-018-01565-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-01565-5

Keywords

Navigation