Skip to main content

Advertisement

Log in

Steroid hormone profiling in human breast adipose tissue using semi-automated purification and highly sensitive determination of estrogens by GC-APCI-MS/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Body mass index is a known breast cancer risk factor due to, among other mechanisms, adipose-derived hormones. We developed a method for steroid hormone profiling in adipose tissue to evaluate healthy tissue around the tumor and define new biomarkers for cancer development. A semi-automated sample preparation method based on gel permeation chromatography and subsequent derivatization with trimethylsilyl (TMS) is presented. Progestagens and androgens were determined by GC-EI-MS/MS (LOQ 0.5 to 10 ng/g lipids). For estrogen measurement, a highly sensitive GC-APCI-MS/MS method was developed to reach the required lower limits of detection (0.05 to 0.1 ng/g lipids in matrix, 100–200 fg on column for pure standards). The combination of the two methods allows the screening of 27 androgens and progestagens and 4 estrogens from a single sample. Good accuracies and repeatabilities were achieved for each compound class at their respective limit of detection. The method was applied to determine steroid hormone profiles in adipose tissue of 51 patients, collected both at proximity and distant to the tumor. Out of the 31 tested steroid hormones, 14 compounds were detected in human samples. Pregnenolone, 17-hydroxypregnenolone, dehydroepiandrosterone (DHEA), and androstendione accounted together for 80% of the observed steroid hormone profiles, whereas the estrogens accounted for only 1%. These profiles did not differ based on sampling location, except for ß-estradiol; steroid hormone conversions from androgens to estrogens that potentially take place in adipose or tumoral tissue might not be detectable due a factor 100 difference in concentration of for example DHEA and ß-estradiol.

Schematic overview of the determination of steroid hormones and metabolites in adipose tissue in proximity and distal to the tumor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arendt LM, Kuperwasser C. Working stiff: how obesity boosts cancer risk. Sci Transl Med. 2015;7(301):301fs34. https://doi.org/10.1126/scitranslmed.aac9446.

    Article  Google Scholar 

  2. Lapeire L, Hendrix A, Lambein K, Van Bockstal M, Braems G, Van Den Broecke R, et al. Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res. 2014;74(23):6806–19. https://doi.org/10.1158/0008-5472.can-14-0160.

    Article  CAS  Google Scholar 

  3. Choi MH, Chung BC. Bringing GC–MS profiling of steroids into clinical applications. Mass Spectrom Rev. 2015;34(2):219–36. https://doi.org/10.1002/mas.21436.

    Article  CAS  Google Scholar 

  4. Vona-Davis L, Rose DP. The obesity-inflammation-eicosanoid axis in breast cancer. J Mammary Gland Biol Neoplasia. 2013;18(3–4):291–307. https://doi.org/10.1007/s10911-013-9299-z.

    Article  Google Scholar 

  5. Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab. 2000;11(8):327–32. https://doi.org/10.1016/s1043-2760(00)00301-5.

    Article  CAS  Google Scholar 

  6. Tchernof A, Mansour MF, Pelletier M, Boulet MM, Nadeau M, Luu-The V. Updated survey of the steroid-converting enzymes in human adipose tissues. J Steroid Biochem Mol Biol. 2015;147:56–69. https://doi.org/10.1016/j.jsbmb.2014.11.011.

    Article  CAS  Google Scholar 

  7. Savolainen-Peltonen H, Vihma V, Leidenius M, Wang F, Turpeinen U, Hamalainen E, et al. Breast adipose tissue estrogen metabolism in postmenopausal women with or without breast cancer. J Clin Endocrinol Metab. 2014;99(12):E2661–E7. https://doi.org/10.1210/jc.2014-2550.

    Article  CAS  Google Scholar 

  8. Franke AA, Custer LJ, Morimoto Y, Nordt FJ, Maskarinec G. Analysis of urinary estrogens, their oxidized metabolites, and other endogenous steroids by benchtop orbitrap LCMS versus traditional quadrupole GCMS. Anal Bioanal Chem. 2011;401(4):1319–30. https://doi.org/10.1007/s00216-011-5164-3.

    Article  CAS  Google Scholar 

  9. Gadzała-Kopciuch R, Ričanyová J, Buszewski B. Isolation and detection of steroids from human urine by molecularly imprinted solid-phase extraction and liquid chromatography. J Chromatogr B. 2009;877(11–12):1177–84. https://doi.org/10.1016/j.jchromb.2009.03.008.

    Article  Google Scholar 

  10. Krone N, Hughes BA, Lavery GG, Stewart PM, Arlt W, Shackleton CHL. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J Steroid Biochem Mol Biol. 2010;121(3–5):496–504. https://doi.org/10.1016/j.jsbmb.2010.04.010.

    Article  CAS  Google Scholar 

  11. Kushnir MM, Rockwood AL, Bergquist J, Varshavsky M, Roberts WL, Yue B, et al. High-sensitivity tandem mass spectrometry assay for serum estrone and estradiol. Am J Clin Pathol. 2008;129(4):530–9. https://doi.org/10.1309/lc03bhq5xjpjyekg.

    Article  CAS  Google Scholar 

  12. Moeller BC, Stanley SD. The development and validation of a turbulent flow chromatography-tandem mass spectrometry method for the endogenous steroid profiling of equine serum. J Chromatogr B-Anal Technol BiomedLife Sci. 2012;905:1–9. https://doi.org/10.1016/j.jchromb.2012.06.021.

    Article  CAS  Google Scholar 

  13. Falk RT, Xu X, Keefer L, Veenstra TD, Ziegler RG. A liquid chromatography-mass spectrometry method for the simultaneous measurement of 15 urinary estrogens and estrogen metabolites: assay reproducibility and interindividual variability. Cancer Epidemiol Biomark Prev. 2008;17(12):3411–8. https://doi.org/10.1158/1055-9965.epi-08-0355.

    Article  CAS  Google Scholar 

  14. Handelsman DJ, Jimenez M, Singh GKS, Spaliviero J, Desai R, Walters KA. Measurement of testosterone by immunoassays and mass spectrometry in mouse serum. Testicular Ovarian Extracts Endocrinol. 2015; https://doi.org/10.1210/en.2014-1664.

  15. Koal T, Schmiederer D, Pham-Tuan H, Röhring C, Rauh M. Standardized LC–MS/MS based steroid hormone profile-analysis. J Steroid Biochem Mol Biol. 2012;129(3–5):129–38. https://doi.org/10.1016/j.jsbmb.2011.12.001.

    Article  CAS  Google Scholar 

  16. Pozo OJ, Van Eenoo P, Deventer K, Delbeke FT. Ionization of anabolic steroids by adduct formation in liquid chromatography electrospray mass spectrometry. J Mass Spectrom. 2007;42(4):497–516. https://doi.org/10.1002/jms.1182.

    Article  CAS  Google Scholar 

  17. Courant F, Aksglaede L, Antignac J-P, Monteau F, Sorensen K, Andersson A-M, et al. Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J Clin Endocrinol Metab. 2010;95(1):82–92. https://doi.org/10.1210/jc.2009-1140.

    Article  CAS  Google Scholar 

  18. Hansen M, Jacobsen NW, Nielsen FK, Bjorklund E, Styrishave B, Halling-Sorensen B. Determination of steroid hormones in blood by GC-MS/MS. Anal Bioanal Chem. 2011;400(10):3409–17. https://doi.org/10.1007/s00216-011-5038-8.

    Article  CAS  Google Scholar 

  19. Matysik S, Schmitz G, Bauer S, Kiermaier J, Matysik FM. Potential of gas chromatography–atmospheric pressure chemical ionization–time-of-flight mass spectrometry for the determination of sterols in human plasma. Biochem Biophys Res Commun. 2014;446(3):751–5. https://doi.org/10.1016/j.bbrc.2014.01.026.

    Article  CAS  Google Scholar 

  20. Raro M, Portolés T, Sancho JV, Pitarch E, Hernández F, Marcos J, et al. Mass spectrometric behavior of anabolic androgenic steroids using gas chromatography coupled to atmospheric pressure chemical ionization source. Part I: ionization. J Mass Spectrom. 2014;49(6):509–21. https://doi.org/10.1002/jms.3367.

    Article  CAS  Google Scholar 

  21. Vihma V, Wang F, Savolainen-Peltonen H, Turpeinen U, Hämäläinen E, Leidenius M, et al. Quantitative determination of estrone by liquid chromatography–tandem mass spectrometry in subcutaneous adipose tissue from the breast in postmenopausal women. J Steroid Biochem Mol Biol. 2016;155(Part A):120–5. https://doi.org/10.1016/j.jsbmb.2015.10.004.

    Article  CAS  Google Scholar 

  22. Wang F, Vihma V, Badeau M, Savolainen-Peltonen H, Leidenius M, Mikkola T, et al. Fatty acyl esterification and deesterification of 17 beta-estradiol in human breast subcutaneous adipose tissue. J Clin Endocrinol Metab. 2012;97(9):3349–56. https://doi.org/10.1210/jc.2012-1762.

    Article  CAS  Google Scholar 

  23. Falk RT, Gentzschein E, Stanczyk FZ, Brinton LA, Garcia-Closas M, Ioffe OB, et al. Measurement of sex steroid hormones in breast adipocytes: methods and implications. Cancer Epidemiol Biomark Prev. 2008;17(8):1891–5. https://doi.org/10.1158/1055-9965.epi-08-0119.

    Article  CAS  Google Scholar 

  24. Marcos J, Pozo OJ. Derivatization of steroids in biological samples for GC-MS and LC-MS analyses. Bioanalysis. 2015;7(19):2515–36. https://doi.org/10.4155/bio.15.176.

    Article  CAS  Google Scholar 

  25. Schumacher M, Guennoun R, Mattern C, Oudinet JP, Labombarda F, De Nicola AF, et al. Analytical challenges for measuring steroid responses to stress, neurodegeneration and injury in the central nervous system. Steroids. 2015;103:42–57. https://doi.org/10.1016/j.steroids.2015.08.013.

    Article  CAS  Google Scholar 

  26. McEwen CN, McKay RG. A combination atmospheric pressure LC/MS:GC/MS ion source: advantages of dual AP-LC/MS:GC/MS instrumentation. J Am Soc Mass Spectrom. 2005;16:1730–8.

    Article  CAS  Google Scholar 

  27. Horning EC, Carroll DI, Dzidic I, Haegele KD, Lin S, Oertli CU, et al. Development and use of analytical systems based on mass spectrometry. Clin Chem. 1977;23(1):13–21.

    CAS  Google Scholar 

  28. Raro M, Portoles T, Pitarch E, Sancho JV, Hernandez F, Garrostas L, et al. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids. Anal Chim Acta. 2016;906:128–38. https://doi.org/10.1016/j.aca.2015.11.041.

    Article  CAS  Google Scholar 

  29. Savolainen-Peltonen H, Vihma V, Leidenius M, Wang F, Turpeinen U, Hämäläinen E, et al. Breast adipose tissue estrogen metabolism in postmenopausal women with or without breast cancer. J Clin Endocrinol Metab. 2014;99(12):E2661–E7. https://doi.org/10.1210/jc.2014-2550.

    Article  CAS  Google Scholar 

  30. Wang F, Vihma V, Soronen J, Turpeinen U, Hamalainen E, Savolainen-Peltonen H, et al. 17beta-Estradiol and estradiol fatty acyl esters and estrogen-converting enzyme expression in adipose tissue in obese men and women. J Clin Endocrinol Metab. 2013;98(12):4923–31. https://doi.org/10.1210/jc.2013-2605.

    Article  CAS  Google Scholar 

  31. Ploteau S, Antignac JP, Volteau C, Marchand P, Venisseau A, Vacher V, et al. Distribution of persistent organic pollutants in serum, omental, and parietal adipose tissue of French women with deep infiltrating endometriosis and circulating versus stored ratio as new marker of exposure. Environ Int. 2016; https://doi.org/10.1016/j.envint.2016.08.011.

  32. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total LIPIDES from animal tissues. J Biol Chem. 1957;226(1):497–509.

    CAS  Google Scholar 

  33. Commission decision of August 2002 implementing the Council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. 2002.

  34. WatersCorporation. Atmospheric pressure GC (APGC). 2013.

  35. Courant F, Antignac J-P, Maume D, Monteau F, Andersson A-M, Skakkebaek N, et al. Exposure assessment of prepubertal children to steroid endocrine disrupters 1. Analytical strategy for estrogens measurement in plasma at ultra-trace level. Anal Chim Acta. 2007;586(1–2):105–14. https://doi.org/10.1016/j.aca.2006.11.002.

    Article  CAS  Google Scholar 

  36. Geng D, Kukucka P, Jogsten IE. Analysis of brominated flame retardants and their derivatives by atmospheric pressure chemical ionization using gas chromatography coupled to tandem quadrupole mass spectrometry. Talanta. 2017;162:618–24. https://doi.org/10.1016/j.talanta.2016.10.060.

    Article  CAS  Google Scholar 

  37. Halloum W, Cariou R, Dervilly-Pinel G, Jaber F, Le Bizec B. APCI as an innovative ionization mode compared to EI and CI for the analysis of a large range of organophosphate esters using GC-MS/MS. J Mass Spectrom: JMS. 2016; https://doi.org/10.1002/jms.3899.

  38. Megson D, Robson M, Jobst KJ, Helm PA, Reiner EJ. Determination of halogenated flame retardants using gas chromatography with atmospheric pressure chemical ionization (APCI) and a high-resolution quadrupole time-of-flight mass spectrometer (HRqTOFMS). Anal Chem. 2016;88(23):11406–11. https://doi.org/10.1021/acs.analchem.6b01550.

    Article  CAS  Google Scholar 

  39. Falk RT, Gentzschein E, Stanczyk FZ, Garcia-Closas M, Figueroa JD, Ioffe OB, et al. Sex steroid hormone levels in breast adipose tissue and serum in postmenopausal women. Breast Cancer Res Treat. 2012;131(1):287–94.

    Article  CAS  Google Scholar 

  40. Dalla Valle L, Toffolo V, Nardi A, Fiore C, Bernante P, Di Liddo R, et al. Tissue-specific transcriptional initiation and activity of steroid sulfatase complementing dehydroepiandrosterone sulfate uptake and intracrine steroid activations in human adipose tissue. J Endocrinol. 2006;190(1):129–39.

    Article  CAS  Google Scholar 

  41. Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The regulation of steroid action by sulfation and desulfation. Endocr Rev. 2015;36(5):526–63.

    Article  CAS  Google Scholar 

  42. Pasqualini JR, Chetrite GS. Estradiol as an anti-aromatase agent in human breast cancer cells. J Steroid Biochem Mol Biol. 2006;98(1):12–7.

    Article  CAS  Google Scholar 

  43. Stanczyk FZ, Mathews BW, Sherman ME. Relationships of sex steroid hormone levels in benign and cancerous breast tissue and blood: a critical appraisal of current science. Steroids. 2015;99(Pt A):91–102. https://doi.org/10.1016/j.steroids.2014.12.011.

    Article  CAS  Google Scholar 

  44. Haynes BP, Straume AH, Geisler J, A'Hern R, Helle H, Smith IE, et al. Intratumoral estrogen disposition in breast cancer. Clin Cancer Res. 2010;16(6):1790–801. https://doi.org/10.1158/1078-0432.ccr-09-2481.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly thank all the volunteer participants since this study had not been possible without their cooperation. Furthermore, we deeply thank Odyssea for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Philippe Antignac.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennig, K., Antignac, J.P., Bichon, E. et al. Steroid hormone profiling in human breast adipose tissue using semi-automated purification and highly sensitive determination of estrogens by GC-APCI-MS/MS. Anal Bioanal Chem 410, 259–275 (2018). https://doi.org/10.1007/s00216-017-0717-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0717-8

Keywords

Navigation