Skip to main content

Advertisement

Log in

Monitoring of post-mortem changes of saliva N-glycosylation by nano LC/MS

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The estimation of post-mortem interval (PMI) is a crucial part for investigations of crime and untimely deaths in forensic science. However, standard methods of PMI estimation are easily confounded by extenuating circumstances and/or environmental factors. Therefore, a panel of PMI markers obtained from a more acceptable and accurate method is necessary to definitely determine time of death. Saliva, one of the vital fluids encountered at crime scenes, contains various glycoproteins that are highly affected by biochemical environment. Here, we investigated saliva N-glycans between live and dead rats to determine the alteration of N-glycans using an animal model system because of the limitation of saliva collection from recently deceased humans. Rat saliva samples were collected both before and after death. N-Glycans were enzymatically released by PNGase F without any glycoprotein extraction. Released native glycans were purified and enriched by PGC-SPE. About 100 N-glycans were identified, profiled, and structurally elucidated by nano LC/MS and tandem MS. Sialylated N-glycans were exclusively present in abundance in live rat saliva whereas non-sialylated N-glycans including LacdiNAc disaccharides were detected in high level following death. Through in-depth investigations using quantitative comparison and statistical analysis, 14 N-glycans that significantly changed after death were identified as the potential marker candidates for PMI estimation. To the best of our knowledge, this is the first study to monitor the post-mortem changes of saliva glycosylation, with obvious forensic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Houck MM. Forensic science : modern methods of solving crime. Westport, Conn: Praeger Publishers; 2007.

    Google Scholar 

  2. Saferstein R. Forensic science : from the crime scene to the crime lab. Upper Saddle River, N.J.: Prentice Hall; 2009.

    Google Scholar 

  3. Vanezis P, Trujillo O. Evaluation of hypostasis using a colorimeter measuring system and its application to assessment to the post-mortem interval (time of death). Forensic Sci Int. 1996;78(1):19–28. https://doi.org/10.1016/0379-0738(95)01845-X.

    Article  CAS  Google Scholar 

  4. Honjyo K, Yonemitsu K, Tsunenari S. Estimation of early postmortem intervals by a multiple regression analysis using rectal temperature and non-temperature based postmortem changes. J Clin Forensic Med. 2005;12(5):249–53. https://doi.org/10.1016/j.jcfm.2005.02.003.

    Article  Google Scholar 

  5. Mathur A, Agrawal YK. An overview of methods used for estimation of time since death. Aust J Forensic Sci. 2011;43(4):275–85. https://doi.org/10.1080/00450618.2011.568970.

    Article  Google Scholar 

  6. Wardak KS, Cina SJ. Algor mortis: an erroneous measurement following postmortem refrigeration. J Forensic Sci. 2011;56(5):1219–21. https://doi.org/10.1111/j.1556-4029.2011.01811.x.

    Article  Google Scholar 

  7. Mann RW, Bass WM, Meadows L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J Forensic Sci. 1990;35(1):103–11. https://doi.org/10.1520/JFS12806J.

    Article  CAS  Google Scholar 

  8. Vass AA. Beyond the grave-understanding human decomposition. Microbiology today. 2001;28:190–3.

    Google Scholar 

  9. Sutherland A, Myburgh J, Steyn M, Becker PJ. The effect of body size on the rate of decomposition in a temperate region of South Africa. Forensic Sci Int. 2013;231(1-3):257-262. doi:https://doi.org/10.1016/j.forsciint.2013.05.035.

  10. Donaldson AE, Lamont IL. Metabolomics of post-mortem blood: identifying potential markers of post-mortem interval. Metabolomics. 2015;11(1):237–45. https://doi.org/10.1007/s11306-014-0691-5.

    Article  CAS  Google Scholar 

  11. Zelentsova EA, Yanshole LV, Snytnikova OA, Yanshole VV, Tsentalovich YP, Sagdeev RZ. Post-mortem changes in the metabolomic compositions of rabbit blood, aqueous and vitreous humors. Metabolomics. 2016;12(11). doi:https://doi.org/10.1007/s11306-016-1118-2.

  12. Kaszynski RH, Nishiumi S, Azuma T, Yoshida M, Kondo T, Takahashi M, et al. Postmortem interval estimation: a novel approach utilizing gas chromatography/mass spectrometry-based biochemical profiling. Anal Bioanal Chem. 2016;408(12):3103–12. https://doi.org/10.1007/s00216-016-9355-9.

    Article  CAS  Google Scholar 

  13. Kikuchi K, Kawahara KI, Biswas KK, Ito T, Tancharoen S, Shiomi N, et al. HMGB1: a new marker for estimation of the postmortem interval. Exp Ther Med. 2010;1(1):109–11. https://doi.org/10.3892/etm_00000019.

    Article  CAS  Google Scholar 

  14. Sabucedo AJ, Furton KG. Estimation of postmortem interval using the protein marker cardiac troponin I. Forensic Sci Int. 2003;134(1):11–6. https://doi.org/10.1016/S0379-0738(03)00080-X.

    Article  CAS  Google Scholar 

  15. Madea B. Is there recent progress in the estimation of the postmortem interval by means of thanatochemistry? Forensic Sci Int. 2005;151(2-3):139–49. https://doi.org/10.1016/j.forsciint.2005.01.013.

    Article  CAS  Google Scholar 

  16. Guo JJ, Fu XL, Liao HD, Hu ZY, Long LL, Yan WT et al. Potential use of bacterial community succession for estimating post-mortem interval as revealed by high-throughput sequencing. Sci Rep-Uk. 2016;6. doi:https://doi.org/10.1038/srep24197.

  17. Chiappin S, Antonelli G, Gatti R, De Palo EF. Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta. 2007;383(1-2):30–40. https://doi.org/10.1016/j.cca.2007.04.011.

    Article  CAS  Google Scholar 

  18. Royle L, Roos A, Harvey DJ, Wormald MR, van Gijlswijk-Janssen D, el Redwan RM, et al. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem. 2003;278(22):20140–53. https://doi.org/10.1074/jbc.M301436200.

    Article  CAS  Google Scholar 

  19. Almstahl A, Wikstrom M, Groenink J. Lactoferrin, amylase and mucin MUC5B and their relation to the oral microflora in hyposalivation of different origins. Oral Microbiol Immun. 2001;16(6):345–52. https://doi.org/10.1034/j.1399-302X.2001.160605.x.

    Article  CAS  Google Scholar 

  20. Yamashita K, Tachibana Y, Nakayama T, Kitamura M, Endo Y, Kobata A. Structural studies of the sugar chains of human parotid alpha-amylase. J Biol Chem. 1980;255(12):5635–42.

    CAS  Google Scholar 

  21. Gillece-Castro BL, Prakobphol A, Burlingame AL, Leffler H, Fisher SJ. Structure and bacterial receptor activity of a human salivary proline-rich glycoprotein. J Biol Chem. 1991;266(26):17358–68.

    CAS  Google Scholar 

  22. Issa S, Moran AP, Ustinov SN, Lin JH, Ligtenberg AJ, Karlsson NG. O-linked oligosaccharides from salivary agglutinin: Helicobacter pylori binding sialyl-Lewis x and Lewis b are terminating moieties on hyperfucosylated oligo-N-acetyllactosamine. Glycobiology. 2010;20(8):1046–57. https://doi.org/10.1093/glycob/cwq066.

    Article  CAS  Google Scholar 

  23. Slavkin HC. Toward molecularly based diagnostics for the oral cavity. J Am Dent Assoc. 1998;129(8):1138–43. 10.14219/jada.archive.1998.0390.

    Article  CAS  Google Scholar 

  24. Ozcan S, An HJ, Vieira AC, Park GW, Kim JH, Mannis MJ, et al. Characterization of novel O-glycans isolated from tear and saliva of ocular rosacea patients. J Proteome Res. 2013;12(3):1090–100. https://doi.org/10.1021/pr3008013.

    Article  CAS  Google Scholar 

  25. Everest-Dass AV, Jin D, Thaysen-Andersen M, Nevalainen H, Kolarich D, Packer NH. Comparative structural analysis of the glycosylation of salivary and buccal cell proteins: innate protection against infection by Candida albicans. Glycobiology. 2012;22(11):1465–79. https://doi.org/10.1093/glycob/cws112.

    Article  CAS  Google Scholar 

  26. Sondej M, Denny PA, Xie Y, Ramachandran P, Si Y, Takashima J, et al. Glycoprofiling of the human salivary proteome. Clin Proteomics. 2009;5(1):52–68. https://doi.org/10.1007/s12014-008-9021-0.

    Article  CAS  Google Scholar 

  27. Venkatakrishnan V, Thaysen-Andersen M, Chen SC, Nevalainen H, Packer NH. Cystic fibrosis and bacterial colonization define the sputum N-glycosylation phenotype. Glycobiology. 2015;25(1):88–100. https://doi.org/10.1093/glycob/cwu092.

    Article  CAS  Google Scholar 

  28. Holten-Andersen L, Thaysen-Andersen M, Jensen SB, Buchwald C, Hojrup P, Offenberg H, et al. Salivary tissue inhibitor of metalloproteinases-1 localization and glycosylation profile analysis. APMIS. 2011;119(11):741–9. https://doi.org/10.1111/j.1600-0463.2011.02796.x.

    Article  CAS  Google Scholar 

  29. Lee YH, Wong DT. Saliva: an emerging biofluid for early detection of diseases. Am J Dent. 2009;22(4):241–8.

    Google Scholar 

  30. Ozcan S, Kim BJ, Ro G, Kim JH, Bereuter TL, Reiter C, et al. Glycosylated proteins preserved over millennia: N-glycan analysis of Tyrolean Iceman. Scythian Princess and Warrior. Sci Rep-Uk. 2014;4:4963. https://doi.org/10.1038/srep04963.

    CAS  Google Scholar 

  31. Hua S, Jeong HN, Dimapasoc LM, Kang I, Han C, Choi JS, et al. Isomer-specific LC/MS and LC/MS/MS profiling of the mouse serum N-glycome revealing a number of novel sialylated N-glycans. Anal Chem. 2013;85(9):4636–43. https://doi.org/10.1021/ac400195h.

    Article  CAS  Google Scholar 

  32. Hua S, Oh MJ, Ozcan S, Seo YS, Grimm R, An HJ. Technologies for glycomic characterization of biopharmaceutical erythropoietins. Trac-Trend Anal Chem. 2015;68:18–27. https://doi.org/10.1016/j.trac.2015.02.004.

    Article  CAS  Google Scholar 

  33. Aldredge D, An HJ, Tang N, Waddell K, Lebrilla CB. Annotation of a serum N-glycan library for rapid identification of structures. J Proteome Res. 2012;11(3):1958–68. https://doi.org/10.1021/pr2011439.

    Article  CAS  Google Scholar 

  34. An HJ, Lebrilla CB. Structure elucidation of native N- and O-linked glycans by tandem mass spectrometry (tutorial). Mass Spectrom Rev. 2011;30(4):560–78. https://doi.org/10.1002/mas.20283.

    Article  CAS  Google Scholar 

  35. Vieira AC, An HJ, Ozcan S, Kim JH, Lebrilla CB, Mannis MJ. Glycomic analysis of tear and saliva in ocular rosacea patients: the search for a biomarker. Ocul Surf. 2012;10(3):184–92. https://doi.org/10.1016/j.jtos.2012.04.003.

    Article  Google Scholar 

  36. Kronewitter SR, An HJ, de Leoz ML, Lebrilla CB, Miyamoto S, Leiserowitz GS. The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome. Proteomics. 2009;9(11):2986–94. https://doi.org/10.1002/pmic.200800760.

    Article  CAS  Google Scholar 

  37. Gao WN, Yau LF, Liu L, Zeng X, Chen DC, Jiang M, et al. Microfluidic chip-LC/MS-based glycomic analysis revealed distinct N-glycan profile of rat serum. Sci Rep. 2015;5:12844. https://doi.org/10.1038/srep12844.

    Article  CAS  Google Scholar 

  38. Hirshberg A, Bodner L, Naor H, Skutelsky E, Dayan D. Lectin histochemistry of the submandibular and sublingual salivary glands in rats. Histol Histopathol. 1996;11(4):999–1005.

    CAS  Google Scholar 

  39. Yu SY, Khoo KH, Yang Z, Herp A, Wu AM. Glycomic mapping of O- and N-linked glycans from major rat sublingual mucin. Glycoconj J. 2008;25(3):199–212. https://doi.org/10.1007/s10719-007-9071-y.

    Article  CAS  Google Scholar 

  40. Schauer R, Schmid H, Pommerencke J, Iwersen M, Kohla G. Metabolism and role of O-acetylated sialic acids. Adv Exp Med Biol. 2001;491:325–42. https://doi.org/10.1007/978-1-4615-1267-7_21.

    Article  CAS  Google Scholar 

  41. Klein A, Roussel P. O-acetylation of sialic acids. Biochimie. 1998;80(1):49–57. https://doi.org/10.1016/S0300-9084(98)80056-4.

    Article  CAS  Google Scholar 

  42. Higa HH, Manzi A, Varki A. O-acetylation and de-O-acetylation of sialic acids. Purification, characterization, and properties of a glycosylated rat liver esterase specific for 9-O-acetylated sialic acids. J Biol Chem. 1989;264(32):19435–42.

    CAS  Google Scholar 

  43. Liedtke S, Geyer H, Wuhrer M, Geyer R, Frank G, Gerardy-Schahn R, et al. Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology. 2001;11(5):373–84. https://doi.org/10.1093/glycob/11.5.373.

    Article  CAS  Google Scholar 

  44. Van den Nieuwenhof IM, Schiphorst WE, Van Die I, Van den Eijnden DH. Bovine mammary gland UDP-GalNAc:GlcNAcβ-R β1→4-N-acetylgalactosaminyltransferase is glycoprotein hormone nonspecific and shows interaction with α-lactalbumin. Glycobiology. 1999;9(2):115–23. https://doi.org/10.1093/glycob/9.2.115.

    Article  Google Scholar 

  45. Rossez Y, Gosset P, Boneca IG, Magalhaes A, Ecobichon C, Reis CA, et al. The lacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J Infect Dis. 2014;210(8):1286–95. https://doi.org/10.1093/infdis/jiu239.

    Article  CAS  Google Scholar 

  46. Lichtenstein RG, Rabinovich GA. Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ. 2013;20(8):976–86. https://doi.org/10.1038/cdd.2013.50.

    Article  CAS  Google Scholar 

  47. Saraswat P, Nirwan P, Saraswat S, Mathur P. Biodegradation of dead bodies including human cadavers and their safe disposal with reference to mortuary practice. J Indian Acad Forensic Med. 2008;30:273–80.

    Google Scholar 

  48. Mehendiratta M, Jain K, Boaz K, Bansal M, Manaktala N. Estimation of time elapsed since the death from identification of morphological and histological time-related changes in dental pulp: An observational study from porcine teeth. J Forensic Dent Sci. 2015;7(2):95. https://doi.org/10.4103/0975-1475.154594.

    Article  Google Scholar 

  49. Forbes SL. Decomposition chemistry in a burial environment. Soil Analysis in Forensic Taphonomy. New York: CRC Press, Taylor & Francis; 2008.

  50. Hans R, Thomas S, Garla B, Dagli RJ, Hans MK. Effect of Various Sugary Beverages on Salivary pH, Flow Rate, and Oral Clearance Rate amongst Adults. Scientifica. 2016;2016:6. https://doi.org/10.1155/2016/5027283.

    Article  Google Scholar 

  51. Lebrilla CB, An HJ. The prospects of glycan biomarkers for the diagnosis of diseases. Mol Biosyst. 2009;5(1):17–20. https://doi.org/10.1039/b811781k.

    Article  CAS  Google Scholar 

  52. Donaldson AE, Lamont IL. Estimation of post-mortem interval using biochemical markers. Aust J Forensic Sci. 2014;46(1):8–26. https://doi.org/10.1080/00450618.2013.784356.

    Article  Google Scholar 

  53. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291(5512):2370–6. https://doi.org/10.1126/science.291.5512.2370.

    Article  CAS  Google Scholar 

  54. Lowe JB. Glycosylation, immunity, and autoimmunity. Cell. 2001;104(6):809–12. https://doi.org/10.1016/S0092-8674(01)00277-X.

    Article  CAS  Google Scholar 

  55. Pozhitkov AE, Neme R, Domazet-Loso T, Leroux B, Soni S, Tautz D, et al. Thanatotranscriptome: genes actively expressed after organismal death. bioRxiv. 2016; https://doi.org/10.1101/058305.

Download references

Acknowledgements

The authors are grateful for the support provided by a Korea Basic Science Institute grant (C37703 for J.S.C.) and a grant from the Ministry of Science, ICT and Future Planning (NRF-2016M3A9E1918324 for H.J.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Joo An.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal rights

The authors declare that the experiments have been conducted in accordance with the protocol of the Korean Council on Animal Care and approved by the Animal Care Committee of Korea Basic Science Institute (KBSI-AEC 1715). All efforts were made to minimize animal suffering and to reduce the number of rats.

Electronic supplementary material

ESM 1

(PDF 1.35 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.J., Han, C., Moon, H. et al. Monitoring of post-mortem changes of saliva N-glycosylation by nano LC/MS. Anal Bioanal Chem 410, 45–56 (2018). https://doi.org/10.1007/s00216-017-0702-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0702-2

Keywords

Navigation