Skip to main content

Advertisement

Log in

A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Rapid and accurate detection of microRNAs in biological systems is of great importance. Here, we report the development of a visual colorimetric assay which possesses the high amplification capabilities and high selectivity of the rolling circle amplification (RCA) method and the simplicity and convenience of gold nanoparticles used as a signal indicator. The designed padlock probe recognizes the target miRNA and is circularized, and then acts as the template to extend the target miRNA into a long single-stranded nucleotide chain of many tandem repeats of nucleotide sequences. Next, the RCA product is hybridized with oligonucleotides tagged onto gold nanoparticles. This interaction leads to the aggregation of gold nanoparticles, and the color of the system changes from wine red to dark blue according to the abundance of miRNA. A linear correlation between fluorescence and target oligonucleotide content was obtained in the range 0.3–300 pM, along with a detection limit of 0.13 pM (n = 7) and a RSD of 3.9% (30 pM, n = 9). The present approach provides a simple, rapid, and accurate visual colorimetric assay that allows sensitive biodetection and bioanalysis of DNA and RNA nucleotides of interest in biologically important samples.

The colorimetric assay system for analyzing target oligonucleotides

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.

    Article  CAS  Google Scholar 

  2. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.

    Article  CAS  Google Scholar 

  3. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yen-damuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    Article  CAS  Google Scholar 

  4. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64(11):3753–6.

    Article  CAS  Google Scholar 

  5. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635–47.

  6. Mueller DW, Bosserhoff AK. Integrin beta(3) expression is regulated by let-7a miRNA in malignant melanoma. Oncogene. 2008;27(52):6698–706.

    Article  CAS  Google Scholar 

  7. Mueller DW, Rehli M, Bosserhoff AK. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol. 2009;129(7):1740–51.

    Article  CAS  Google Scholar 

  8. Zhao WA, Ali MM, Brook MA, Li YF. Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed. 2008;47(34):6330–7.

    Article  CAS  Google Scholar 

  9. Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT. Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater. 2012;11(4):316–22.

    Article  CAS  Google Scholar 

  10. Li N, Jablonowski C, Jin HL, Zhong WW. Stand-alone rolling circle amplification combined with capillary electrophoresis for specific detection of small RNA. Anal Chem. 2009;81(12):4906–13.

    Article  CAS  Google Scholar 

  11. Chapin SC, Doyle PS. Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification. Anal Chem. 2011;83(18):7179–85.

    Article  CAS  Google Scholar 

  12. Xu W, Xie XJ, Li DW, Yang ZQ, Li TH, Liu XG. Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease-assisted nanoparticle amplification (NEANA). Small. 2012;8(12):1846–50.

    Article  CAS  Google Scholar 

  13. Dong H, Wang C, Xiong Y, Lu H, Ju H, Zhang X. Highly sensitive and selective chemiluminescent imaging for DNA detection by ligation-mediated rolling circle amplified synthesis of DNAzyme. Biosens Bioelectron. 2013;41:348–53.

    Article  CAS  Google Scholar 

  14. Deng RJ, Tang LH, Tian QQ, Wang Y, Lin L, Li JH. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Angew Chem Int Ed. 2014;53(9):2389–93.

    Article  CAS  Google Scholar 

  15. Zhao H, Ma XD, Li ML, Zhou DR, Xiao PF, Lu ZH. Analysis of CpG island methylation using rolling circle amplification (RCA) product microarray. J Biomed Nanotechnol. 2011;7:292–9.

    Article  CAS  Google Scholar 

  16. Cao AP, Zhang CY. Sensitive and label-free DNA methylation detection by ligation-mediated hyperbranched rolling circle amplification. Anal Chem. 2012;84(14):6199–205.

    Article  CAS  Google Scholar 

  17. Qi XQ, Bakht S, Devos KM, Gale MD, Osbourn A. L-RCA (ligation-rolling circle amplification): a general method for genotyping of shingle nucleotide polymorphisms (SNPs). Nucleic Acids Res. 2001;29(22):116e.

  18. Li JS, Deng T, Chu X, Yang RH, Jiang JH, Shen GL, et al. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal Chem. 2010;82(7):2811–6.

    Article  CAS  Google Scholar 

  19. Ali MM, Li YF. Colorimetric sensing by using allosteric-DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe. Angew Chem Int Ed. 2009;48(19):3512–5.

    Article  CAS  Google Scholar 

  20. Xue QW, Wang L, Jiang W. A novel label-free cascade amplification strategy based on dumbbell probe-mediated rolling circle amplification-responsive G-quadruplex formation for highly sensitive and selective detection of NAD(+) or ATP. Chem Commun. 2013;49(26):2640–2.

    Article  CAS  Google Scholar 

  21. Konry T, Smolina I, Yarmush JM, Irimia D, Yarmush ML. Ultrasensitive detection of low-abundance surface-marker protein using isothermal rolling circle amplification in a microfluidic nanoliter platform. Small. 2011;7(3):395–400.

    Article  CAS  Google Scholar 

  22. Tang LH, Liu Y, Ali MM, Kang DK, Zhao WA, Li JH. Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem. 2012;84(11):4711–7.

    Article  CAS  Google Scholar 

  23. Hamidi SV, Ghourchian H. Colorimetric monitoring of rolling circle amplification for detection of H5N1 influenza virus using metal indicator. Biosens Bioelectron. 2015;72:121–6.

    Article  CAS  Google Scholar 

  24. Ding CF, Liu HT, Wang NN, Wang ZF. Cascade signal amplification strategy for the detection of cancer cells by rolling circle amplification and nanoparticles tagging. Chem Commun. 2012;48(41):5019–21.

    Article  CAS  Google Scholar 

  25. Bi S, Ji B, Zhang ZP, Zhang SS. A chemiluminescence imaging array for the detection of cancer cells by dual-aptamer recognition and bio-bar-code nanoprobe-based rolling circle amplification. Chem Commun. 2013;49(33):3452–4.

    Article  CAS  Google Scholar 

  26. Hu B, Hu LL, Chen ML, Wang JH. A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells. Biosens Bioelectron. 2013;49:499–505.

    Article  CAS  Google Scholar 

  27. Zhang LP, Hu B, Wang JH. Label-free colorimetric sensing of ascorbic acid based on Fenton reaction with unmodified gold nanoparticle probes and multiple molecular logic gates. Anal Chim Acta. 2012;717:127–33.

    Article  CAS  Google Scholar 

  28. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382(6592):607–9.

    Article  CAS  Google Scholar 

  29. Zhao B, Song ZR, Guan YF. Discriminative identification of miRNA let-7 family members with high specificity and sensitivity using rolling circle amplification. Acta Bioch Bioph Sin. 2015;47(2):130–6.

    Article  CAS  Google Scholar 

  30. Zhao B, Tong ZX, Zhao GJ, Mu RQ, Shang H, Guan YF. Discriminative identification of miRNA let-7 family members with high specificity and sensitivity using rolling circle amplification. Acta Bioch Bioph Sin. 2014;46(9):727–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (81371896, YG) and the Excellent Young Teacher Program of China Medical University (YQ20160006, BH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Guo, J., Xu, Y. et al. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology. Anal Bioanal Chem 409, 4819–4825 (2017). https://doi.org/10.1007/s00216-017-0425-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0425-4

Keywords

Navigation