Skip to main content
Log in

Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Development of simple, sensitive, and rapid method for cocaine detection is important in medicine and drug abuse monitoring. Taking advantage of fluorescence anisotropy and aptamer, this study reports a direct fluorescence anisotropy (FA) assay for cocaine by employing an aptamer probe with tetramethylrhodamine (TMR) labeled on a specific position. The binding of cocaine and the aptamer causes a structure change of the TMR-labeled aptamer, leading to changes of the interaction between labeled TMR and adjacent G bases in aptamer sequence, so FA of TMR varies with increasing of cocaine. After screening different labeling positions of the aptamer, including thymine (T) bases and terminals of the aptamer, we obtained a favorable aptamer probe with TMR labeled on the 25th base T in the sequence, which exhibited sensitive and significant FA-decreasing responses upon cocaine. Under optimized assay conditions, this TMR-labeled aptamer allowed for direct FA detection of cocaine as low as 5 μM. The maximum FA change reached about 0.086. This FA method also enabled the detection of cocaine spiked in diluted serum and urine samples, showing potential for applications.

The binding of cocaine to the TMR-labeled aptamer causes conformation change and alteration of the intramolecular interaction between TMR and bases of aptamer, leading to variance of fluorescence anisotropy (FA) of TMR, so direct FA analyis of cocaine is achieved

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science. 1987;237(4819):1219–23.

    Article  CAS  Google Scholar 

  2. Lu Y, O’Donnell RM, Harrington PB. Detection of cocaine and its metabolites in urine using solid phase extraction-ion mobility spectrometry with alternating least squares. Forensic Sci Int. 2009;189(1–3):54–9.

    Article  CAS  Google Scholar 

  3. Zhang CY, Johnson LW. Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem. 2009;81(8):3051–5.

    Article  CAS  Google Scholar 

  4. Mendelson JH, Mello NK. Management of cocaine abuse and dependence. New England J Med. 1996;334(15):965–72.

    Article  CAS  Google Scholar 

  5. Stojanovic MN, de Prada P, Landry DW. Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc. 2000;122(46):11547–8.

    Article  CAS  Google Scholar 

  6. Stojanovic MN, de Prada P, Landry DW. Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc. 2001;123(21):4928–31.

    Article  CAS  Google Scholar 

  7. Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li XF, Le XC. Aptamers facilitating amplified detection of biomolecules. Anal Chem. 2015;87(1):274–92.

    Article  CAS  Google Scholar 

  8. Liu J, Cao Z, Lu Y. Functional nucleic acids sensors. Chem Rev. 2009;109(5):1948–98.

    Article  CAS  Google Scholar 

  9. Deng N, Liang Z, Liang Y, Sui Z, Zhang L, Wu Q, Yang K, Zhang L, Zhang Y. Aptamer modified organic-inorganic hybrid silica monolithic capillary columns for highly selective recognition of thrombin. Anal Chem. 2012;84(23):10186–90.

    Article  CAS  Google Scholar 

  10. Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li XF, Le XC. Aptamer binding assays for proteins: the thrombin example—a review. Anal Chim Acta. 2014;837:1–15.

    Article  CAS  Google Scholar 

  11. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc. 2006;128(10):3138–9.

    Article  CAS  Google Scholar 

  12. Juskowiak B. Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem. 2011;399(9):3157–76.

    Article  CAS  Google Scholar 

  13. Zhou J, Battig MR, Wang Y. Aptamer-based molecular recognition for biosensor development. Anal Bioanal Chem. 2010;398(6):2471–80.

    Article  CAS  Google Scholar 

  14. Stojanovic MN, Landry D. W. Aptamer-based colorimetric probe for cocaine. J Am Chem Soc. 2002;124(33):9678–9.

    Article  CAS  Google Scholar 

  15. Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed. 2006;45(1):90–4.

    Article  CAS  Google Scholar 

  16. Cui L, Zou Y, Lin N, Zhu Z, Jenkins G, Yang CJ. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples. Anal Chem. 2012;84(13):5535–41.

    Article  CAS  Google Scholar 

  17. Cruz-Aguado JA, Penner G. Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem. 2008;80(22):8853–5.

    Article  CAS  Google Scholar 

  18. Ruta J, Perrier S, Ravelet C, Fize J, Peyrin E. Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection. Anal Chem. 2009;81(17):7468–73.

    Article  CAS  Google Scholar 

  19. Zhu Z, Ravelet C, Perrier S, Guieu V, Fiore E, Peyrin E. Single-stranded DNA binding protein-assisted fluorescence polarization aptamer assay for detection of small molecules. Anal Chem. 2012;84(16):7203–11.

    Article  CAS  Google Scholar 

  20. Zhao Q, Lv Q, Wang H. Identification of allosteric nucleotide sites of tetramethylrhodamine-labeled aptamer for noncompetitive aptamer-based fluorescence anisotropy detection of a small molecule, ochratoxin A. Anal Chem. 2014;86(2):1238–45.

    Article  CAS  Google Scholar 

  21. Jameson DM, Ross JA. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev. 2010;110(5):2685–708.

    Article  CAS  Google Scholar 

  22. Smith DS, Eremin SA. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem. 2008;391(5):1499–507.

    Article  CAS  Google Scholar 

  23. Geng X, Zhang D, Wang H, Zhao Q. Screening interaction between ochratoxin A and aptamers by fluorescence anisotropy approach. Anal Bioanal Chem. 2013;405(8):2443–9.

    Article  CAS  Google Scholar 

  24. Xiao X, Li YF, Huang CZ, Zhen SJ. A novel graphene oxide amplified fluorescence anisotropy assay with improved accuracy and sensitivity. Chem Commun. 2015;51(89):16080–3.

    Article  CAS  Google Scholar 

  25. Zhao Q, Lv Q, Wang H. Aptamer fluorescence anisotropy sensors for adenosine triphosphate by comprehensive screening tetramethylrhodamine labeled nucleotides. Biosens Bioelectron. 2015;70:188–93.

    Article  CAS  Google Scholar 

  26. Huang H, Wei H, Zou M, Xu X, Xia B, Liu F, Li N. Modulating fluorescence anisotropy of terminally labeled double-stranded DNA via the interaction between dye and nucleotides for rational design of DNA recognition based applications. Anal Chem. 2015;87(5):2748–54.

    Article  CAS  Google Scholar 

  27. Liu J, Wang C, Jiang Y, Hu Y, Li J, Yang S, Li Y, Yang R, Tan W, Huang CZ. Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecules. Anal Chem. 2013;85(3):1424–30.

    Article  CAS  Google Scholar 

  28. Huang H, Qin J, Hu K, Liu X, Zhao S, Huang Y. Novel autonomous protein-encoded aptamer nanomachines and isothermal exponential amplification for ultrasensitive fluorescence polarization sensing of small molecules. RSC Adv. 2016;6(89):86043–50.

    Article  CAS  Google Scholar 

  29. Heinlein T, Knemeyer JP, Piestert O, Sauer M. Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-hairpins. J Phys Chem B. 2003;107(31):7957–64.

    Article  CAS  Google Scholar 

  30. Liu Y, Zhao Q. Fluorescence anisotropy assay for D-vasopressin with a tetramethylrhodamine-labeled aptamer. Anal Methods. 2016;8(11):2383–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged the support from National Natural Science Foundation of China (Grant No. 21575153, 21435008), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14030200), and the Key Research Program of the Chinese Academy of Sciences (KFZD-SW-203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, Q. Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer. Anal Bioanal Chem 409, 3993–4000 (2017). https://doi.org/10.1007/s00216-017-0349-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0349-z

Keywords

Navigation