Skip to main content
Log in

A novel detection method of human serum albumin based on CuInZnS quantum dots-Co2+ sensing system

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We developed a novel “turn off-on” sensor for human serum albumin (HSA) detection based on CuInZnS quantum dots (CIZS QDs). The photoluminescence (PL) of QDs can be “turned off” by Co(II) first. Because of the strong binding ability of HSA with Co2+, Co2+ can be removed from CIZS QDs with the addition of HSA. As a result, the PL of CIZS QDs probe can be “turned on” with an increased concentration of HSA over a wide range. The analyte HSA concentration had a proportional linear relationship with the recovered PL intensity of CIZS QDs. The detection limit for HSA was 4.5 × 10–8 mol L–1. The results indicated that the CIZS QDs- Co2+-BSA sensing system possessed higher sensitivity and better practicability for HSA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu AHB, Morris DL, Fletcher DR, Apple FS, Christenson RH, Painter PC. Analysis of the Albumin Cobalt Binding (ACB) test as an adjunct to cardiac troponin I for the early detection of acute myocardial infarction. Cardiovasc Toxicol. 2001;1:47–151.

    Article  Google Scholar 

  2. Maciej C, Katarzyna S, Marta S, Bikram KCC, Pawel B, Krzysztof N, et al. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosens Bioelectron. 2015;12:960–6.

    Google Scholar 

  3. Carolina B, Daniel A, Marcela L, Juan ML. RP-HPLC method development for the simultaneous determination of timolol maleate and human serum albumin in albumin nanoparticles. J Pharmaceut Biomed. 2015;10:186–9.

    Google Scholar 

  4. Morris-Cohen AJ, Malicki M, Peterson MD, Slavin JWJ, Weiss MA. Chemical, structural, and quantitative analysis of the ligand shells of colloidal quantum dots. Chem Mater. 2013;25:1155–65.

    Article  CAS  Google Scholar 

  5. Li L, Wu P, Hwang K, Lu Y. Chemical noise produced by equilibrium adsorption/desorption of surface pyridine at Au-Ag-Au bimetallic atom-scale junctions studied by fluctuation spectroscopy. J Am Chem Soc. 2013;35:2411–4.

    Article  Google Scholar 

  6. Zhao Y, Ma Y, Li H, Wang L. Correction to composite QDs@MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal Chem. 2012;84:5447.

    Article  CAS  Google Scholar 

  7. Jawaid AM, Chattopadhyay S, Wink DJ, Page LE, Snee PT. Cluster-seeded synthesis of doped CdSe:Cu quantum dots. ACS Nano. 2013;7:3190–7.

    Article  CAS  Google Scholar 

  8. Wang Y, Hu R, Lin G, Roy I, Yong KT. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl Mater Interface. 2013;5:2786–99.

    Article  CAS  Google Scholar 

  9. Jaiswal JK, Simon SM. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 2004;14:497–504.

    Article  CAS  Google Scholar 

  10. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nana T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5:763–75.

    Article  CAS  Google Scholar 

  11. Ma Q, Su X. Recent advances and applications in QDs-based sensors. Analyst. 2011;136:4883–93.

    Article  CAS  Google Scholar 

  12. Xiong W, Yang G, Wu X, Zhu J. Aqueous synthesis of color-tunable CuInS2/ZnS nanocrystals for the detection of human interleukin 6. ACS Appl Mater Interface. 2013;5:8210–316.

    Article  CAS  Google Scholar 

  13. Wang Y, Ye C, Wu L, Hu Y. Synthesis and characterization of self-assembled CdHgTe/gelatin nanospheres as stable near infrared fluorescent probes in vivo. J Pharmaceut Biomed. 2010;53:235–42.

    Article  CAS  Google Scholar 

  14. Regulacio MD, Win KY, Lo SL, Zhang S, Zhang X, Wang S, et al. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale. 2013;5:2322–7.

    Article  CAS  Google Scholar 

  15. He X, Ma N. An overview of recent advances in quantum dots for biomedical applications. Colloid Surface B. 2014;124:118–31.

    Article  CAS  Google Scholar 

  16. Gou X, Cheng F, Shi Y, Zhang L, Peng S, Chen J, et al. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S, Se)2 nano-/microstructures via facile solution route. J Am Chem Soc. 2006;128:7222–9.

    Article  CAS  Google Scholar 

  17. Chen Z, Li D, Zhang W, Chen C, Li W, Sun M, et al. Low-temperature and template-free synthesis of ZnIn2S4 microspheres. Inorg Chem. 2008;47:9766–72.

    Article  CAS  Google Scholar 

  18. Shen S, Zhao L, Guo L. ZnmIn2S3+m (m = 1–5, integer): a new series of visible-light-driven photocatalysts for splitting water to hydrogen. Int J Hydrogen Energy. 2010;35:10148–54.

    Article  CAS  Google Scholar 

  19. Song Y, Li Y, Liu Z, Liu L, Wang X, Su X, et al. A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence “turn on-off” nanosensor for lysozyme detection. Biosens Bioelectron. 2014;61:9–13.

    Article  CAS  Google Scholar 

  20. Song Y, Li Y, Liu Y, Su X, Ma Q. Highly sensitive and selective detection of phosphate using novel highly photoluminescent water-soluble Mn-doped ZnTe/ZnSe quantum dots. Talanta. 2015;144:680–5.

    Article  CAS  Google Scholar 

  21. Wang H, Wu Y, Song J. Interface potential sensing from adsorption of human serum albumin (HSA) on carbon nanotube (CNT) monitored by zero current potentiometry for HSA determination. Biosens Bioelectron. 2015;10:225–9.

    Article  Google Scholar 

  22. Eertmans F, Bogaert V, Puype B. Development and validation of a high-performance liquid chromatography (HPLC) method for the determination of human serum albumin (HSA) in medical devices. Anal Methods–UK. 2011;3:1296–302.

    Article  CAS  Google Scholar 

  23. Escosura-Muniz A, Gonzalez-Garcia M, Costa-Garcia A. Determination of human serum albumin using aurothiomalate as electroactive label. Anal Bioanal Chem. 2006;2:742–50.

    Article  Google Scholar 

  24. Jiang C, Luo L. Spectrofluorimetric determination of human serum albumin using a doxycycline–europium probe. Anal Chim Acta. 2004;3:171–5.

    Article  Google Scholar 

  25. Jiang C, Luo L. Analytical quantification of low-density lipoprotein using europium tetracycline indicator. Anal Methods–UK. 2004;6:1129–37.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 21075050 and no. 21005029) and Youth Science Fund of Jilin Province (20140520081JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma.

Ethics declarations

Conflict of interest

We have no conflict or potential interest.

There is no research involving human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, W., Chen, X. & Ma, Q. A novel detection method of human serum albumin based on CuInZnS quantum dots-Co2+ sensing system. Anal Bioanal Chem 409, 3871–3876 (2017). https://doi.org/10.1007/s00216-017-0332-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0332-8

Keywords

Navigation