Skip to main content
Log in

Facile preparation of hexadecyl-functionalized magnetic core-shell microsphere for the extraction of polychlorinated biphenyls in environmental waters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Alkyl moieties which can retain target analytes due to their lipophilicity are important in sample preparation. In this work, hexadecyl-functionalized magnetic core-shell microspheres (Fe3O4@SiO2-C16) was successfully prepared by one-pot sol–gel method and used for magnetic solid-phase extraction of polychlorinated biphenyls (PCBs) in environmental water samples. Optimized preparation method was achieved by altering the adding moment of hexadecyl-silane. The resultant materials were systematically characterized by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectroscopy, energy dispersive X-ray spectrometry, tensionmeter, and vibrating sample magnetometer. The results demonstrated that the optimized adsorbent exhibited core-shell structure, superparamagnetic (66 emu/g), and extremely hydrophobic (water contact angle of 122°) properties. To evaluate the extraction performance, the prepared material coupled with gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) was applied to determinate PCBs. The extraction conditions were optimized. Under the optimal conditions, the proposed method showed a good linearity range of 1–100 ng L−1 with correlation coefficients (R) of 0.9989–0.9993. Based on a signal-to-noise ratio of 3 and 10, the limits of detection (LODs) and limits of quantification (LOQs) were in the range 0.14–0.27 and 0.39–0.91 ng L−1, respectively. The intra- and inter-day relative standard deviations (RSDs) were less than 9.06%. The absolute recoveries of PCBs in spiked real water samples were in the range of 75.17 to 101.20%. Additionally, reusability and batch-to-batch reproducibility of the resultant material were acceptable with RSDs less than 5.64 and 3.25%, respectively.

The synthesis procedure of Fe3O4@SiO2-C16 and determination of PCBs in water sample 129 × 50 mm (300 × 300 DPI)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wierucka M, Biziuk M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TrAC Trends Anal Chem. 2014;59:50–8.

    Article  CAS  Google Scholar 

  2. Huang DN, Deng CH, Zhang XM. Functionalized magnetic nanomaterials as solid-phase extraction adsorbents for organic pollutants in environmental analysis. Anal Methods-Uk. 2014;6(18):7130–41.

    Article  CAS  Google Scholar 

  3. Kaur R, Hasan A, Iqbal N, Alam S, Saini MK, Raza SK. Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. J Sep Sci. 2014;37(14):1805–25.

    Article  CAS  Google Scholar 

  4. Li XS, Zhu GT, Luo YB, Yuan BF, Feng YQ. Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trends Anal Chem. 2013;45:233–47.

    Article  CAS  Google Scholar 

  5. Chen LG, Wang T, Tong J. Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples. TrAC Trends Anal Chem. 2011;30(7):1095–108.

    Article  CAS  Google Scholar 

  6. Giakisikli G, Anthemidis AN. Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta. 2013;789:1–16.

    Article  CAS  Google Scholar 

  7. Dziadas M, Nowacka M, Jesionowski T, Jelen HH. Comparison of silica gel modified with three different functional groups with C-18 and styrene-divinylbenzene adsorbents for the analysis of selected volatile flavor compounds. Anal Chim Acta. 2011;699(1):66–72.

    Article  CAS  Google Scholar 

  8. Bang DY, Byeon SK, Moon MH. Rapid and simple extraction of lipids from blood plasma and urine for liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2014;1331:19–26.

    Article  CAS  Google Scholar 

  9. Luo K, Gao Q, Hu JY. Derivatization method for sensitive determination of 3-hydroxybenzo[a]pyrene in human urine by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A. 2015;1379:51–5.

    Article  CAS  Google Scholar 

  10. Sha YF, Deng CH, Liu BZ. Development of C18-functionalized magnetic silica nanoparticles as sample preparation technique for the determination of ergosterol in cigarettes by microwave-assisted derivatization and gas chromatography/mass spectrometry. J Chromatogr A. 2008;1198:27–33.

    Article  Google Scholar 

  11. Synaridou MES, Sakkas VA, Stalikas CD, Albanis TA. Evaluation of magnetic nanoparticles to serve as solid-phase extraction sorbents for the determination of endocrine disruptors in milk samples by gas chromatography mass spectrometry. J Chromatogr A. 2014;1348:71–9.

    Article  CAS  Google Scholar 

  12. Qiao Z, Perestrelo R, Reyes-Gallardo EM, Lucena R, Cardenas S, Rodrigues J, et al. Octadecyl functionalized core-shell magnetic silica nanoparticle as a powerful nanocomposite sorbent to extract urinary volatile organic metabolites. J Chromatogr A. 2015;1393:18–25.

    Article  CAS  Google Scholar 

  13. Liu Y, Li HF, Lin JM. Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography–mass spectrometry. Talanta. 2009;77(3):1037–42.

    Article  CAS  Google Scholar 

  14. Maddah B, Shamsi J. Extraction and preconcentration of trace amounts of diazinon and fenitrothion from environmental water by magnetite octadecylsilane nanoparticles. J Chromatogr A. 2012;1256:40–5.

    Article  CAS  Google Scholar 

  15. Ahmadi F, Rajabi M, Faizi F, Rahimi-Nasrabadi M, Maddah B. Magnetic solid-phase extraction of Zineb by C18-functionalised paramagnetic nanoparticles and determination by first-derivative spectrophotometry. Int J Environ Anal Chem. 2014;94(11):1123–38.

    Article  CAS  Google Scholar 

  16. Yamini Y, Faraji M, Adeli M. Magnetic silica nanomaterials for solid-phase extraction combined with dispersive liquid-liquid microextraction of ultra-trace quantities of plasticizers. Microchim Acta. 2015;182(7–8):1491–9.

    Article  CAS  Google Scholar 

  17. Zhang H, Liu QS, Yang CL, Lv JZ, Xie LQ, Tang MJ, et al. C18/C8-functionalized magnetic silica nanospheres (Fe3O4@Si-C8/C18) as capture probes for highly efficient and rapid purification of veterinary drug residues. Food Anal Methods. 2013;6(3):933–40.

    Article  Google Scholar 

  18. Breivik K, Sweetman A, Pacyna JM, Jones KC. Towards a global historical emission inventory for selected PCB congeners—a mass balance approach-3. An update. Sci Total Environ. 2007;377(2–3):296–307. doi:10.1016/j.scitotenv.2007.02.026.

    Article  CAS  Google Scholar 

  19. Perez RA, Albero B, Tadeo JL, Sanchez-Brunete C. Oleate functionalized magnetic nanoparticles as sorbent for the analysis of polychlorinated biphenyls in juices. Microchim Acta. 2016;183(1):157–65. doi:10.1007/s00604-015-1617-2.

    Article  CAS  Google Scholar 

  20. Mai BX, Zeng EY, Luo XJ, Yang QS, Zhang G, Li XD, et al. Abundances, depositional fluxes, and homologue patterns of polychlorinated biphenyls in dated sediment cores from the Pearl River Delta, China. Environ Sci Technol. 2005;39(1):49–56. doi:10.1021/es049015d.

    Article  CAS  Google Scholar 

  21. Barakat AO, Khairy M, Aukaily I. Persistent organochlorine pesticide and PCB residues in surface sediments of Lake Qarun, a protected area of Egypt. Chemosphere. 2013;90(9):2467–76.

    Article  CAS  Google Scholar 

  22. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006;93(2):223–41.

    Article  Google Scholar 

  23. Font G, Manes J, Molto JC, Pico Y. Current developments in the analysis of water pollution by polychlorinated biphenyls. J Chromatogr A. 1996;733(1–2):449–71. doi:10.1016/0021-9673(95)00972-8.

    Article  CAS  Google Scholar 

  24. Wolska L, Galer K, Gorecki T, Namiesnik J. Surface water preparation procedure for chromatographic determination of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Talanta. 1999;50(5):985–91. doi:10.1016/S0039-9140(99)00193-9.

    Article  CAS  Google Scholar 

  25. Grzeskowiak T, Czarczynska-Goslinska B, Zgola-Grzeskowiak A. Current approaches in sample preparation for trace analysis of selected endocrine-disrupting compounds: focus on polychlorinated biphenyls, alkylphenols, and parabens. TrAC Trends Anal Chem. 2016;75:209–26.

    Article  CAS  Google Scholar 

  26. Rezaei F, Bidari A, Birjandi AP, Hosseini MRM, Assadi Y. Development of a dispersive liquid-liquid microextraction method for the determination of polychlorinated biphenyls in water. J Hazard Mater. 2008;158(2–3):621–7. doi:10.1016/j.jhazmat.2008.02.005.

    Article  CAS  Google Scholar 

  27. Hassan J, Shamsipur M. Extraction of ultra traces of polychlorinated biphenyls in aqueous samples using suspended liquid-phase microextraction and gas chromatography-electron capture detection. Environ Monit Assess. 2013;185(5):3637–44. doi:10.1007/s10661-012-2815-6.

    Article  CAS  Google Scholar 

  28. Wu YY, Yang CX, Yan XP. Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls. J Chromatogr A. 2014;1334:1–8. doi:10.1016/j.chroma.2014.01.079.

    Article  CAS  Google Scholar 

  29. Zheng HJ, Liu QW, Jia Q. Preparation of poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) monolithic column modified with beta-cyclodextrin and nano-cuprous oxide and its application in polymer monolithic microextraction of polychlorinated biphenyls. J Chromatogr A. 2014;1343:47–54. doi:10.1016/j.chroma.2014.03.067.

    Article  CAS  Google Scholar 

  30. Lin SC, Gan N, Qiao L, Zhang JB, Cao YT, Chen YJ. Magnetic metal-organic frameworks coated stir bar sorptive extraction coupled with GC-MS for determination of polychlorinated biphenyls in fish samples. Talanta. 2015;144:1139–45. doi:10.1016/j.talanta.2015.07.084.

    Article  CAS  Google Scholar 

  31. Lei Y, He M, Chen BB, Hu B. Polyaniline/cyclodextrin composite coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detection for the analysis of trace polychlorinated biphenyls in environmental waters. Talanta. 2016;150:310–8. doi:10.1016/j.talanta.2015.12.025.

    Article  CAS  Google Scholar 

  32. Conka K, Drobna B, Kocan A, Petrik J. Simple solid-phase extraction method for determination of polychlorinated biphenyls and selected organochlorine pesticides in human serum. J Chromatogr A. 2005;1084(1–2):33–8. doi:10.1016/j.chroma.2004.11.029.

    Article  CAS  Google Scholar 

  33. Yang FX, Jin SW, Meng DY, Xu Y. Solid phase extraction with pyrenebutyric acid-bonded silica for analysis of polychlorinated biphenyls in sewage water by gas chromatography–mass spectrometry. Chemosphere. 2010;81(8):1000–5. doi:10.1016/j.chemosphere.2010.09.016.

    Article  CAS  Google Scholar 

  34. Chen XF, Ding N, Zang H, Yeung H, Zhao RS, Cheng CG, et al. Fe3O4@MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples. J Chromatogr A. 2013;1304:241–5. doi:10.1016/j.chroma.2013.06.053.

    Article  CAS  Google Scholar 

  35. Cao XJ, Chen JY, Ye XM, Zhang FF, Shen LX, Mo WM. Ultrasound-assisted magnetic SPE based on Fe3O4-grafted graphene for the determination of polychlorinated biphenyls in water samples. J Sep Sci. 2013;36(21–22):3579–85. doi:10.1002/jssc.201300770.

    Article  CAS  Google Scholar 

  36. Karamani AA, Douvalis AP, Stalikas CD. Zero-valent iron/iron oxide-oxyhydroxide/graphene as a magnetic sorbent for the enrichment of polychlorinated biphenyls, polyaromatic hydrocarbons and phthalates prior to gas chromatography–mass spectrometry. J Chromatogr A. 2013;1271:1–9. doi:10.1016/j.chroma.2012.11.018.

    Article  CAS  Google Scholar 

  37. Zeng SL, Gan N, Weideman-Mera R, Cao YT, Li TH, Sang WG. Enrichment of polychlorinated biphenyl 28 from aqueous solutions using Fe3O4 grafted graphene oxide. Chem Eng J. 2013;218:108–15. doi:10.1016/j.cej.2012.12.030.

    Article  CAS  Google Scholar 

  38. Zhang JB, Gan N, Pan MY, Lin SC, Cao YT, Wu DZ, et al. Separation and enrichment of six indicator polychlorinated biphenyls from real waters using a novel magnetic multiwalled carbon nanotube composite absorbent. J Sep Sci. 2015;38(5):871–82. doi:10.1002/jssc.201400696.

    Article  CAS  Google Scholar 

  39. Liao QG, Wang DG, Luo LG. Chitosan-poly(m-phenylenediamine)@Fe3O4 nanocomposite for magnetic solid-phase extraction of polychlorinated biphenyls from water samples. Anal Bioanal Chem. 2014;406(29):7571–9. doi:10.1007/s00216-014-8215-8.

    Article  CAS  Google Scholar 

  40. Perez RA, Albero B, Tadeo JL, Molero E, Sanchez-Brunete C. Application of magnetic iron oxide nanoparticles for the analysis of PCBs in water and soil leachates by gas chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2015;407(7):1913–24. doi:10.1007/s00216-014-8409-0.

    Article  CAS  Google Scholar 

  41. Ding J, Gao QA, Luo D, Shi ZG, Feng YQ. n-Octadecylphosphonic acid grafted mesoporous magnetic nanoparticle: preparation, characterization, and application in magnetic solid-phase extraction. J Chromatogr A. 2010;1217(47):7351–8.

    Article  CAS  Google Scholar 

  42. Zuin WG, Montero L, Bauer C, Popp P. Stir bar sorptive extraction and high-performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in Mate teas. J Chromatogr A. 2005;1091(1–2):2–10.

    Article  CAS  Google Scholar 

  43. U.S. EPA. Method 3520C (SW-846): continuous liquid-liquid extraction, Revision 3, 1996.

  44. U.S. EPA. Method 3535 (SW-846): solid-phase extraction, revision 0, 1996.

  45. U.S. EPA. Method 8082A (SW-846): polychlorinated biphenyls (PCBs) by gas chromatography, revision 1, 2007.

  46. Wang L, Wang X, Zhou J-B, Zhao R-S. Carbon nanotube sponges as a solid-phase extraction adsorbent for the enrichment and determination of polychlorinated biphenyls at trace levels in environmental water samples. Talanta. 2016;160:79–85. doi:10.1016/j.talanta.2016.07.005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (21507116 and 41473095), China Postdoctoral Science Foundation (2015M572213 and 2016T90744), and Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGL160409).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Shui Li or Shi-Hua Qi.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, YH., Zhang, SW., Qin, SB. et al. Facile preparation of hexadecyl-functionalized magnetic core-shell microsphere for the extraction of polychlorinated biphenyls in environmental waters. Anal Bioanal Chem 409, 3337–3346 (2017). https://doi.org/10.1007/s00216-017-0278-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0278-x

Keywords

Navigation