Skip to main content
Log in

Isatin functionalized nanoporous SBA-15 as a selective fluorescent probe for the detection of Hg(II) in water

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A highly ordered mesoporous silica material functionalized with isatin (SBA-Pr-IS) was designed and synthesized. Characterization techniques including XRD, TGA, BET, SEM, and FT-IR were employed to characterize the pore structure, textural properties, microscopic morphology, and molecular composition of grafted organic moieties of SBA-Pr-IS. The successful attachment of the organic moiety (0.34 mmol g−1) without the SBA-15 structure collapsing after the modification steps was confirmed. Fluorescence characterization of SBA-Pr-IS was examined upon addition of a wide variety of cations in aqueous medium and it showed high sensitivity toward Hg2+ ions. During testing in an ion competition experiment, it was observed that the fluorescence changes of the probe were remarkably specific for Hg2+ ions. Furthermore, a good linearity between the fluorescence intensity of this material and the concentration of Hg2+ ions was constructed with a suitable detection limit of 3.7 × 10−6 M. Finally, the applicability of the proposed method was successfully evaluated for the determination of Hg2+ ions in real samples. Therefore, SBA-Pr-IS can be used as an efficient fluorescence probe for Hg2+ ions.

A novel organic-inorganic hybrid material was designed and synthesized by functionalization of SBA-15 mesoporous silica material with isatin. The evaluation of the sensing ability of SBA-Pr-IS using fluorescence spectroscopy revealed that the SBA-Pr-IS was a selective fluorescent probe for Hg2+ ion in water in the presence of a wide range of metal cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Streets DG, Devane MK, Lu Z, Bond TC, Sunderland EM, Jacob DJ. All-time releases of mercury to the atmosphere from human activities. Environ Sci Technol. 2011;45(24):10485–91.

    Article  CAS  Google Scholar 

  2. Rafaj P, Bertok I, Cofala J, Schöpp W. Scenarios of global mercury emissions from anthropogenic sources. Atmos Environ. 2013;79:472–9.

    Article  CAS  Google Scholar 

  3. Kim K-H, Kabir E, Jahan SA. A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater. 2016;306:376–85.

    Article  CAS  Google Scholar 

  4. Tan SW, Meiller JC, Mahaffey KR. The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol. 2009;39(3):228–69.

    Article  CAS  Google Scholar 

  5. Ho NY, Yang L, Legradi J, Armant O, Takamiya M, Rastegar S, et al. Gene responses in the central nervous system of zebrafish embryos exposed to the neurotoxicant methyl mercury. Environ Sci Technol. 2013;47(7):3316–25.

    Article  CAS  Google Scholar 

  6. Miller S, Pallan S, Gangji AS, Lukic D, Clase CM. Mercury-associated nephrotic syndrome: a case report and systematic review of the literature. Am J Kidney Dis. 2013;62(1):135–8.

    Article  Google Scholar 

  7. Pourreza N, Ghanemi K. Determination of mercury in water and fish samples by cold vapor atomic absorption spectrometry after solid phase extraction on agar modified with 2-mercaptobenzimidazole. J Hazard Mater. 2009;161(2–3):982–7.

    Article  CAS  Google Scholar 

  8. Resano M, Briceño J, Belarra MA. Direct determination of Hg in polymers by solid sampling-graphite furnace atomic absorption spectrometry: a comparison of the performance of line source and continuum source instrumentation. Spectrochim Acta B At Spectrosc. 2009;64(6):520–9.

    Article  Google Scholar 

  9. Chen J, Chen H, Jin X, Chen H. Determination of ultra-trace amount methyl-, phenyl- and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration. Talanta. 2009;77(4):1381–7.

    Article  CAS  Google Scholar 

  10. Abollino O, Giacomino A, Malandrino M, Piscionieri G, Mentasti E. Determination of mercury by anodic stripping voltammetry with a gold nanoparticle-modified glassy carbon electrode. Electroanalysis. 2008;20(1):75–83.

    Article  CAS  Google Scholar 

  11. Bhardwaj VK, Sharma H, Kaur N, Singh N. Fluorescent organic nanoparticles (FONs) of rhodamine-appended dipodal derivative: highly sensitive fluorescent sensor for the detection of Hg2+ in aqueous media. New J Chem. 2013;37(12):4192–8.

    Article  CAS  Google Scholar 

  12. Chai F, Wang T, Li L, Liu H, Zhang L, Su Z, et al. Fluorescent gold nanoprobes for the sensitive and selective detection for Hg2+. Nanoscale Res Lett. 2010;5(11):1856–60.

    Article  CAS  Google Scholar 

  13. Chen L, Yang L, Li H, Gao Y, Deng D, Wu Y, et al. Tridentate lysine-based fluorescent sensor for Hg(II) in aqueous solution. Inorg Chem. 2011;50(20):10028–32.

    Article  CAS  Google Scholar 

  14. Jiang XJ, Wong CL, Lo PC, Ng DKP. A highly selective and sensitive BODIPY-based colourimetric and turn-on fluorescent sensor for Hg2+ ions. Dalton Trans. 2012;41(6):1801–7.

    Article  CAS  Google Scholar 

  15. Cheng Z, Li G, Liu M. A metal-enhanced fluorescence sensing platform based on new mercapto rhodamine derivatives for reversible Hg2+ detection. J Hazard Mater. 2015;287:402–11.

    Article  CAS  Google Scholar 

  16. Vasimalai N, Sheeba G, John SA. Ultrasensitive fluorescence-quenched chemosensor for Hg(II) in aqueous solution based on mercaptothiadiazole capped silver nanoparticles. J Hazard Mater. 2012;213–214:193–9.

    Article  Google Scholar 

  17. Lewandowski D, Schroeder G, Sawczak M, Ossowski T. Fluorescence properties of riboflavin-functionalized mesoporous silica SBA-15 and riboflavin solutions in presence of different metal and organic cations. J Phys Chem Solids. 2015;85:56–61.

    Article  CAS  Google Scholar 

  18. Sperling M, Xu S, Welz B. Determination of chromium(III) and chromium(VI) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection. Anal Chem. 1992;64(24):3101–8.

    Article  CAS  Google Scholar 

  19. Choi JY, Kim W, Yoon J. Rhodamine based fluorescent chemosensors for Hg2+ and its biological application. Bull Kor Chem Soc. 2012;33(7):2359–64.

    Article  CAS  Google Scholar 

  20. Erdemir S, Kocyigit O, Karakurt S. A new perylene bisimide-armed calix[4]-aza-crown as “turn on” fluorescent sensor for Hg2+ ion and its application to living cells. Sensors Actuators B. 2015;220:381–8.

    Article  CAS  Google Scholar 

  21. Gao B, Gong WT, Zhang QL, Ye JW, Ning GL. A selective “turn-on” fluorescent sensor for Hg2+ based on “reactive” 7-hydroxycoumarin compound. Sensors Actuators B. 2012;162(1):391–5.

    Article  CAS  Google Scholar 

  22. Mahajan D, Khairnar N, Bondhopadhyay B, Sahoo SK, Basu A, Singh J, et al. A highly selective fluorescent ‘turn-on’ chemosensor for Hg2+ based on a phthalazin-hydrazone derivative and its application in human cervical cancer cell imaging. New J Chem. 2015;39(4):3071–6.

    Article  CAS  Google Scholar 

  23. Martínez R, Espinosa A, Tárraga A, Molina P. A new bis(pyrenyl)azadiene-based probe for the colorimetric and fluorescent sensing of Cu(II) and Hg(II). Tetrahedron. 2010;66(21):3662–7.

    Article  Google Scholar 

  24. Weng J, Mei Q, Ling Q, Fan Q, Huang W. A new colorimetric and fluorescent ratiometric sensor for Hg2+ based on 4-pyren-1-yl-pyrimidine. Tetrahedron. 2012;68(14):3129–34.

    Article  CAS  Google Scholar 

  25. Mohammadi Ziarani G, Lashgari N, Badiei A. Sulfonic acid-functionalized mesoporous silica (SBA-Pr-SO3H) as solid acid catalyst in organic reactions. J Mol Catal A Chem. 2015;397:166–91.

    Article  CAS  Google Scholar 

  26. Bahrami Z, Badiei A, Atyabi F. Surface functionalization of SBA-15 nanorods for anticancer drug delivery. Chem Eng Res Des. 2014;92(7):1296–303.

    Article  CAS  Google Scholar 

  27. Hoffmann F, Cornelius M, Morell J, Fröba M. Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed. 2006;45(20):3216–51.

    Article  CAS  Google Scholar 

  28. Vallet-Regi M, Colilla M, Gonzalez B. Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev. 2011;40(2):596–607.

    Article  CAS  Google Scholar 

  29. Guo X, Li B, Zhang L, Wang Y. Highly selective fluorescent chemosensor for detecting Hg(II) in water based on pyrene functionalized coreshell structured mesoporous silica. J Lumin. 2012;132(7):1729–34.

    Article  CAS  Google Scholar 

  30. Karimi M, Badiei A, Lashgari N, Afshani J, Mohammadi Ziarani G. A nanostructured LUS-1 based organic–inorganic hybrid optical sensor for highly selective sensing of Fe3+ in water. J Lumin. 2015;168:1–6.

    Article  CAS  Google Scholar 

  31. Meng Q, Zhang X, He C, Zhou P, Su W, Duan C. A hybrid mesoporous material functionalized by 1,8-naphthalimide-base receptor and the application as chemosensor and absorbent for Hg2+ in water. Talanta. 2011;84(1):53–9.

    Article  CAS  Google Scholar 

  32. Appiah-Ntiamoah R, Chung WJ, Kim H. A highly selective SBA-15 supported fluorescent “turn-on” sensor for the fluoride anion. New J Chem. 2015;39(7):5570–9.

    Article  CAS  Google Scholar 

  33. Dong Z, Tian X, Chen Y, Hou J, Ma J. Rhodamine group modified SBA-15 fluorescent sensor for highly selective detection of Hg2+ and its application as an INHIBIT logic device. RSC Adv. 2013;3(7):2227–33.

    Article  CAS  Google Scholar 

  34. Li LL, Sun H, Fang CJ, Xu J, Jin JY, Yan CH. Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+) in water. J Mater Chem. 2007;17(42):4492–8.

    Article  CAS  Google Scholar 

  35. Kim E, Eun Kim H, Jin Lee S, Sung Lee S, Lyong Seo M, Hwa Jung J. Reversible solid optical sensor based on acyclic-type receptor immobilized SBA-15 for the highly selective detection and separation of Hg(II) ion in aqueous media. Chem Commun. 2008;33:3921–3.

    Article  Google Scholar 

  36. Lashgari N, Mohammadi Ziarani G. Synthesis of heterocyclic compounds based on isatin through 1,3-dipolar cycloaddition reactions Arkivoc. 2012;i:277–320.

  37. Mohammadi Ziarani G, Moradi R, Lashgari N. Asymmetric synthesis of chiral 3,3-disubstituted oxindoles using isatin as starting material. Tetrahedron Asymmetry. 2015;26:517–41.

    Article  CAS  Google Scholar 

  38. Mohammadi Ziarani G, Moradi R, Lashgari N. Synthesis of spiro-fused heterocyclic scaffolds through multicomponent reactions involving isatin. Arkivoc. 2016;i:1–81.

    Google Scholar 

  39. Chawla HM, Gupta T. New chromogenic bis(isatin hydrazonyl)calix[4]arenes for dual recognition of fluoride and silver ions. Tetrahedron Lett. 2013;54(14):1794–7.

    Article  CAS  Google Scholar 

  40. Xu L, Xu Y, Zhu W, Sun X, Xu Z, Qian X. Modulating the selectivity by switching sensing media: a bifunctional chemosensor selectivity for Cd2+ and Pb2+ in different aqueous solutions. RSC Adv. 2012;2(15):6323–8.

    Article  CAS  Google Scholar 

  41. Goswami S, Paul S, Manna A. Selective “naked eye” detection of Al(III) and PPi in aqueous media on a rhodamine-isatin hybrid moiety. RSC Adv. 2013;3(27):10639–43.

    Article  CAS  Google Scholar 

  42. Dhara A, Jana A, Guchhait N, Kar SK. Isatin appended rhodamine scaffold as an efficient chemical tool to detect selectively Al3+. J Lumin. 2014;154:369–75.

    Article  CAS  Google Scholar 

  43. Dhara A, Guchhait N, Kar SK. A novel Cr3+ fluorescence turn-on probe based on rhodamine and isatin framework. J Fluoresc. 2015;25(6):1921–9.

    Article  CAS  Google Scholar 

  44. Jakusová K, Donovalová J, Cigáň M, Gáplovský M, Garaj V, Gáplovský A. Isatinphenylsemicarbazones as efficient colorimetric sensors for fluoride and acetate anions—anions induce tautomerism. Spectrochim Acta A. 2014;123:421–9.

    Article  Google Scholar 

  45. Cigáň M, Jakusová K, Donovalová J, Szöcs V, Gáplovský A. Isatin N-phenylsemicarbazone: effect of substituents and concentration on anion sensing selectivity and sensitivity. RSC Adv. 2014;4(96):54072–9.

    Article  Google Scholar 

  46. Liu K, Zhao X, Huo J, Neufeld K, Dong M, Zhu X. Anion-induced optical outputs of an isatin-based colorimetric HNI sensor for construction of sequential molecular logic gates and a set-reset memorized device. Sensors Actuators B. 2016;226:465–70.

    Article  CAS  Google Scholar 

  47. Wang G-Q, Qin J-C, Fan L, Li C-R, Yang Z-Y. A turn-on fluorescent sensor for highly selective recognition of Mg2+ based on new Schiff’s base derivative. J Photochem Photobiol A: Chem. 2016;314:29–34.

    Article  CAS  Google Scholar 

  48. Mahajan PG, Bhopate DP, Kolekar GB, Patil SR. N-methyl isatin nanoparticles as a novel probe for selective detection of Cd2+ ion in aqueous medium based on chelation enhanced fluorescence and application to environmental sample. Sensors Actuators B. 2015;220:864–72.

    Article  CAS  Google Scholar 

  49. Afshani J, Badiei A, Lashgari N, Mohammadi Ziarani G. A simple nanoporous silica-based dual mode optical sensor for detection of multiple analytes (Fe3+, Al3+ and CN) in water mimicking XOR logic gate. RSC Adv. 2016;6(7):5957–64.

    Article  CAS  Google Scholar 

  50. Karimi M, Badiei A, Mohammadi Ziarani G. A single hybrid optical sensor based on nanoporous silica type SBA-15 for detection of Pb2+ and I in aqueous media. RSC Adv. 2015;5(46):36530–9.

    Article  CAS  Google Scholar 

  51. Zarabadi-Poor P, Badiei A, Yousefi AA, Barroso-Flores J. Selective optical sensing of Hg(II) in aqueous media by H-Acid/SBA-15: a combined experimental and theoretical study. J Phys Chem C. 2013;117(18):9281–9.

    Article  CAS  Google Scholar 

  52. Lashgari N, Badiei A, Mohammadi Ziarani G. Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review. NanoChem Res. 2016;1(1):127–41.

    Google Scholar 

  53. Karimi M, Badiei A, Mohammadi Ziarani G. A click-derived dual organic-inorganic hybrid optical sensor based on SBA-15 for selective recognition of Zn2+ and CN in water. Inorg Chim Acta. 2016;450:346–52.

    Article  CAS  Google Scholar 

  54. Stobiecka M, Molinero AA, Chałupa A, Hepel M. Mercury/homocysteine ligation-induced ON/OFF-switching of a T–T mismatch-based oligonucleotide molecular beacon. Anal Chem. 2012;84(11):4970–8.

    Article  CAS  Google Scholar 

  55. Willner I, Shlyahovsky B, Zayats M, Willner B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev. 2008;37(6):1153–65.

    Article  CAS  Google Scholar 

  56. Lu C-H, Willner B, Willner I. DNA nanotechnology: from sensing and DNA machines to drug-delivery systems. ACS Nano. 2013;7(10):8320–32.

    Article  CAS  Google Scholar 

  57. Zhu Z, Su Y, Li J, Li D, Zhang J, Song S, et al. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem. 2009;81(18):7660–6.

    Article  CAS  Google Scholar 

  58. Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano. 2014;8(2):1121–9.

    Article  CAS  Google Scholar 

  59. Heider EC, Trieu K, Moore AFT, Campiglia AD. Portable mercury sensor for tap water using surface plasmon resonance of immobilized gold nanorods. Talanta. 2012;99:180–5.

    Article  CAS  Google Scholar 

  60. Lashgari N, Badiei A, Mohammadi Ziarani G. A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O7 2−) in water. J Phys Chem Solids. 2017;103:238–48.

    Article  CAS  Google Scholar 

  61. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279(5350):548–52.

    Article  CAS  Google Scholar 

  62. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc. 1998;120(24):6024–36.

    Article  CAS  Google Scholar 

  63. Brunel D, Cauvel A, Fajula F, DiRenzo F. MCM-41 type silicas as supports for immobilized catalysts. Stud Surf Sci Catal. 1995;97:173–80.

    Article  CAS  Google Scholar 

  64. Newkirk AE. Thermogravimetric measurements. Anal Chem. 1960;32(12):1558–63.

    Article  CAS  Google Scholar 

  65. Greenwood NN, Earnshaw A. Zinc, cadmium and mercury. Chemistry of the elements. 2nd ed. Oxford: Butterworth-Heinemann; 1997. p. 1201–26.

    Google Scholar 

  66. Caballero A, Martínez R, Lloveras V, Ratera I, Vidal-Gancedo J, Wurst K, et al. Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. J Am Chem Soc. 2005;127(45):15666–7.

    Article  CAS  Google Scholar 

  67. Zhang X, Huang XJ, Zhu ZJ. A reversible Hg(II)-selective fluorescent chemosensor based on a thioether linked bis-rhodamine. RSC Adv. 2013;3(47):24891–5.

    Article  CAS  Google Scholar 

  68. Niu Q, Wu X, Zhang S, Li T, Cui Y, Li X. A highly selective and sensitive fluorescent sensor for the rapid detection of Hg2+ based on phenylamine-oligothiophene derivative. Spectrochim Acta A. 2016;153:143–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the research council of the University of Tehran for financial support.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Badiei.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashgari, N., Badiei, A., Mohammadi Ziarani, G. et al. Isatin functionalized nanoporous SBA-15 as a selective fluorescent probe for the detection of Hg(II) in water. Anal Bioanal Chem 409, 3175–3185 (2017). https://doi.org/10.1007/s00216-017-0258-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0258-1

Keywords

Navigation