Skip to main content
Log in

Assessing similarity analysis of chromatographic fingerprints of Cyclopia subternata extracts as potential screening tool for in vitro glucose utilisation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Similarity analysis of the phenolic fingerprints of a large number of aqueous extracts of Cyclopia subternata, obtained by high-performance liquid chromatography (HPLC), was evaluated as a potential tool to screen extracts for relative bioactivity. The assessment was based on the (dis)similarity of their fingerprints to that of a reference active extract of C. subternata, proven to enhance glucose uptake in vitro and in vivo. In vitro testing of extracts, selected as being most similar (n = 5; r ≥ 0.962) and most dissimilar (n = 5; r ≤ 0.688) to the reference active extract, showed that no clear pattern in terms of relative glucose uptake efficacy in C2C12 myocytes emerged, irrespective of the dose. Some of the most dissimilar extracts had higher glucose-lowering activity than the reference active extract. Principal component analysis revealed the major compounds responsible for the most variation within the chromatographic fingerprints, as mangiferin, isomangiferin, iriflophenone-3-C-β-d-glucoside-4-O-β-d-glucoside, iriflophenone-3-C-β-d-glucoside, scolymoside, and phloretin-3′,5′-di-C-β-d-glucoside. Quantitative analysis of the selected extracts showed that the most dissimilar extracts contained the highest mangiferin and isomangiferin levels, whilst the most similar extracts had the highest scolymoside content. These compounds demonstrated similar glucose uptake efficacy in C2C12 myocytes. It can be concluded that (dis)similarity of chromatographic fingerprints of extracts of unknown activity to that of a proven bioactive extract does not necessarily translate to lower or higher bioactivity.

(Dis)similarity of HPLC fingerprints is not predictive of relative in vitro glucos uptake efficacy of C. subternata extracts

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Street RA, Prinsloo G (2013) Commercially important medicinal plants of South Africa: a review. J Chem 2013:16. doi:10.1155/2013/205048

    Article  Google Scholar 

  2. Bertram MY, Jaswal AVS, Van Wyk VP, Levitt NS, Hofman KJ (2013) The non-fatal disease burden caused by type 2 diabetes in South Africa, 2009. Glob Health Action 6:19244. doi:10.3402/gha.v6i0.19244

    Google Scholar 

  3. Joubert E, Gelderblom WCA, Louw A, de Beer D (2008) South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides—a review. J Ethnopharmacol 119:376–412

    Article  CAS  Google Scholar 

  4. Chellan N, Joubert E, Strijdom H, Roux C, Louw J, Muller CJF (2014) Aqueous extract of unfermented honeybush (Cyclopia maculata) attenuates STZ-induced diabetes and β-cell cytotoxicity. Planta Med 80:622–629

    Article  CAS  Google Scholar 

  5. Muller CJF, Joubert E, Gabuza K, De Beer D, Fey SJ, Louw J (2011) Assessment of the antidiabetic potential of an aqueous extract of honeybush (Cyclopia intermedia) in streptozotocin and obese insulin resistant Wistar rats. In: Rasooli I (ed) Phytochemicals. Bioactives and impact on health. Intech, Croatia, pp 311–332

    Google Scholar 

  6. Dineshkumar B, Mitra A, Manjunatha M (2010) Studies on the anti-diabetic and hypolipidemic potentials of mangiferin (xanthone glucoside) in streptozotocin-induced type 1 and type 2 diabetic model rats. Int J Adv Pharm Sci 1:75–85

    Article  CAS  Google Scholar 

  7. Miura T, Ichiki H, Hashimoto I, Iwamoto N, Kao M, Kubo M, Ishihara E, Komatsu Y, Okada M, Ishida T, Tanigawa K (2001) Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 8:85–87

    Article  CAS  Google Scholar 

  8. Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J (2005) Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol 97:497–501

    Article  CAS  Google Scholar 

  9. Wang H-L, Li C-Y, Zhang B, Liu Y-D, Lu B-M, Shi Z, An N, Zhao L-K, Zhang J-J, Bao J-K, Wang Y (2014) Mangiferin facilitates islet regeneration and β-cell proliferation through upregulation of cell cycle and β-cell regeneration regulators. Int J Mol Sci 15:9016–9035

    Article  Google Scholar 

  10. Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    Article  Google Scholar 

  11. Gertsch J (2011) Botanical drugs, synergy, and network pharmacology: forth and back to intelligent mixtures. Planta Med 77:1086–1098

    Article  CAS  Google Scholar 

  12. Herranz-López M, Fernández-Arroyo S, Pérez-Sanchez A, Barrajón-Catalán E, Beltrán-Debón R, Menéndez JA, Alonso-Villaverde C, Segura-Carretero A, Joven J, Micol V (2012) Synergism of plant-derived polyphenols in adipogenesis: perspectives and implications. Phytomedicine 19:253–261

    Article  Google Scholar 

  13. Wagner H (2011) Synergy research: approaching a new generation of phytopharmaceuticals. Fitoterapia 82:34–37

    Article  Google Scholar 

  14. Tistaert C, Dejaegher B, Heyden YV (2011) Chromatographic separation techniques and data handling methods for herbal fingerprints: a review. Anal Chim Acta 690:148–161

    Article  CAS  Google Scholar 

  15. De Beer D, Schulze A, Joubert E, de Villiers A, Malherbe C, Stander M (2012) Food ingredient extracts of Cyclopia subternata (honeybush): variation in phenolic composition and antioxidant capacity. Molecules 17:14602–14624

    Article  Google Scholar 

  16. Jung UJ, Lee M-K, Jeong K-S, Choi M-S (2004) The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr 134:2499–2503

    CAS  Google Scholar 

  17. Beelders T, Brand DJ, de Beer D, Malherbe CJ, Mazibuko SE, Muller CJF, Joubert E (2014) Benzophenone C- and O-glucosides from Cyclopia genistoides (honeybush) inhibit mammalian α-glucosidase. J Nat Prod 77:2694–2699

    Article  CAS  Google Scholar 

  18. Zhang Y, Liu X, Han L, Gao X, Liu E, Wang T (2013) Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways. Food Chem 141:2896–2905

    Article  CAS  Google Scholar 

  19. Malherbe CJ, Willenburg E, de Beer D, Bonnet SL, van der Westhuizen JH, Joubert E (2014) Iriflophenone-3-C-glucoside from Cyclopia genistoides: isolation and quantitative comparison of antioxidant capacity with mangiferin and isomangiferin using on-line HPLC antioxidant assays. J Chromatogr B 951–952:164–171

    Article  Google Scholar 

  20. Deutschländer MS, van de Venter M, Roux S, Louw J, Lall N (2009) Hypoglycaemic activity of four plant extracts traditionally used in South Africa for diabetes. J Ethnopharmacol 124:619–624

    Article  Google Scholar 

  21. De Beer D, Malherbe CJ, Beelders T, Willenburg EL, Brand DJ, Joubert E (2015) Isolation of aspalathin and nothofagin from rooibos (Aspalathus linearis) using high-performance countercurrent chromatography: sample loading and compound stability considerations. J Chromatogr A 1381:29–36

    Article  Google Scholar 

  22. Tomasi G, van den Berg F, Andersson C (2004) Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J Chemom 18:231–241

    Article  CAS  Google Scholar 

  23. Eilers PHC (2004) Parametric time warping. Anal Chem 76:404–411

    Article  CAS  Google Scholar 

  24. Hendriks MMWB, Cruz-Juarez L, Bont DD, Hall RD (2005) Preprocessing and exploratory analysis of chromatographic profiles of plant extracts. Anal Chim Acta 545:53–64

    Article  CAS  Google Scholar 

  25. Alaerts G, Dejaeghe B, Smeyers-Verbeke J, Vander Heyden Y (2010) Recent developments in chromatographic fingerprints from herbal products: set-up and data analysis. Comb Chem High Throughput Screen 13:900–922

    Article  CAS  Google Scholar 

  26. Muller CJF, Joubert E, de Beer D, Sanderson M, Malherbe CJ, Fey SJ, Louw J (2012) Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine 20:32–39

    Article  CAS  Google Scholar 

  27. Schulze AE, de Beer D, de Villiers A, Manley M, Joubert E (2014) Chemometric analysis of chromatographic fingerprints shows potential of Cyclopia maculata (Andrews) Kies for production of standardized extracts with high xanthone content. J Agric Food Chem 62:10542–10551

    Article  CAS  Google Scholar 

  28. Daszykowski M, Walczak B (2007) Target selection for alignment of chromatographic signals obtained using monochannel detectors. J Chromatogr A 1176:1–11

    Article  CAS  Google Scholar 

  29. Fang K-T, Liang Y-Z, X-l Y, Chan K, Lu G-H (2006) Critical value determination on similarity of fingerprints. Chemom Intell Lab Syst 82:236–240

    Article  CAS  Google Scholar 

  30. Gong F, Wang BT, Chau FT, Liang YZ (2005) Data preprocessing for chromatographic fingerprint of herbal medicine with chemometric approaches. Anal Lett 38:2475–2492

    Article  CAS  Google Scholar 

  31. Shi Y-H, Xie Z-Y, Wang R, Huang S-J, Li Y-M, Wang Z-T (2012) Quantitative and chemical fingerprint analysis for the quality evaluation of Isatis indigotica based on ultra-performance liquid chromatography with photodiode array detector combined with chemometric methods. Int J Mol Sci 13:9035–9050

    Article  CAS  Google Scholar 

  32. Goodarzi M, Russell PJ, Vander Heyden Y (2013) Similarity analyses of chromatographic herbal fingerprints: a review. Anal Chim Acta 804:16–28

    Article  CAS  Google Scholar 

  33. Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12(1):43. doi:10.1186/2251-6581-12-43

    Article  Google Scholar 

  34. Hu H-G, Wang M-J, Zhao Q-J, Liao H-L, Cai L-Z, Song Y, Zhang J, Yu S-C, Chen W-S, Liu C-M, Wu Q-Y (2007) Synthesis of mangiferin derivatives as protein tyrosine phosphatase 1B inhibitors. Chem Nat Prod 43:663–666

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Economic Competitive Support Package for Agroprocessing, the Department of Science and Technology (NRF grant 70525 to E. Joubert and 84563 to A.E. Schulze), the DST/NRF Professional Development Programme (Postdoctoral fellowship to Dr E.L. Willenburg, NRF Grant 78992 to E.J.) and the Claude Leon Foundation (Postdoctoral fellowship to Dr N Nyunaï). NRF grant holders acknowledge that opinions, findings and conclusions or recommendations expressed in any publication generated by the NRF supported research are those of the authors and that the NRF accepts no liability whatsoever in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Joubert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, A.E., De Beer, D., Mazibuko, S.E. et al. Assessing similarity analysis of chromatographic fingerprints of Cyclopia subternata extracts as potential screening tool for in vitro glucose utilisation. Anal Bioanal Chem 408, 639–649 (2016). https://doi.org/10.1007/s00216-015-9147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9147-7

Keywords

Navigation