Skip to main content
Log in

Multi-class method for biomonitoring of hair samples using gas chromatography-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Currently, non-invasive biomonitoring of human exposure to organic pollutants bases upon the analysis mainly of urine and human breast milk. While mostly persistent organic pollutants are the center of interest, the aim of our study was to develop a method for the determination of different chemical classes of emerging pollutants (organophosphorus flame retardants, plastic additives such as phthalates, bisphenol A, insecticides, antimicrobials, preservatives and musk fragrances) in hair by gas chromatography–mass spectrometry. The preferred sample preparation included hydrolysis of the hair with trifluoroacetic acid in methanol followed by a liquid–liquid extraction using hexane/ethyl acetate. The validated method is characterized by recoveries higher than 77 % for most analytes, relative standard deviations below 16 % and limits of detection between 2 pg mg−1 (HHCB) and 292 pg mg−1 (propylparaben) using 50 mg of dry hair. After respective blank corrections, bis-(2-ethylhexyl)phthalate (DEHP) and the musk fragrance HHCB were the predominant compounds determined in all hair samples at concentrations between 32 and 59 ng mg−1 and 0.8–13 ng mg−1, respectively. The bactericide triclosan and the insect repellent N,N-diethyl-3-methylbenzamide (DEET) were detected in selected hair samples at 2 and 0.8 ng mg−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J App Tocicol 31:285–311

    Article  CAS  Google Scholar 

  2. Golden R, Gandy J, Vollmer G (2005) A review of the endocrine activity of parabens and implications for potential risks to human health. Crit Rev Toxicol 35(5):435–458

    Article  CAS  Google Scholar 

  3. Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Green Brody J, Rudel RA (2012) Endocrine disruptors and asthma-associated chemicals in consumer products. Environ Health Perspec 120:935–943

    Article  CAS  Google Scholar 

  4. Smolders R, Schramm KW, Nickmilder M, Schoeters G (2009) Applicability of non-invasively collected matrices for human biomonitoring. Environ Heal 8:8, open access

    Article  Google Scholar 

  5. Michalke B, Rossbach B, Göen T, Schäferhenrich A, Scherer G (2015) Saliva as a matrix for human biomonitoring in occupational and environmental medicine. Int Arch Occup Environ Health 88:1–44

    Article  Google Scholar 

  6. Esteban M, Castaño A (2009) Non-invasive matrices in human biomonitoring: a review. Environ Int 35(2):438–449

    Article  CAS  Google Scholar 

  7. Malarvannan G, Isobe T, Covaci A, Prudente M, Tanabe S (2013) Accumulation of brominated flame retardants and polychlorinated biphenyls in human breast milk and scalp hair from the Philippines: levels, distribution and profiles. Sci Total Environ 442:366–379

    Article  CAS  Google Scholar 

  8. Högberg J, Hanberg A, Berglund M, Skerfving S, Remberger M, Calafat AM, Filipsson AF, Jansson B, Johansson N, Appelgren M, Håkansson H (2008) Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations. Environ Health Perspect 116:334–339

    Article  Google Scholar 

  9. Appenzeller BMR, Tsatsakis AM (2012) Hair analysis for biomonitoring of environmental and occupational exposure to organic pollutants: State of the art, critical review and future needs. Toxicol Letters 210:119–140

    Article  CAS  Google Scholar 

  10. Król S, Zabiegała B, Namiésnik J (2013) Human hair as a biomarker of human exposure to persistent organic pollutants (POPs). Trends Anal Chem 47:84–98

    Article  Google Scholar 

  11. Yusa V, Ye X, Calafat AM (2012) Methods for the determination of biomarkers of exposure to emerging pollutants in human specimens. Trends Anal Chem 38:130–142

    Article  Google Scholar 

  12. Rivier L (2000) Is there a place for hair analysis in doping controls? Forensic Sci Int 107(1–3):309–323

    Article  CAS  Google Scholar 

  13. Cooper GAA, Kronstrand R, Kintz P (2012) Society of Hair Testing guidelines for drug testing in hair. Forensic Sci Inter 218:20–24

    Article  CAS  Google Scholar 

  14. Barbosa J, Faria J, Carvalho F, Pedro M, Queiros O, Moreira R, Dinis-Oliveira RJ (2013) Hair as an alternative matrix in bioanalysis. Bioanalysis 5:895–914

    Article  CAS  Google Scholar 

  15. Chang Y-J, Lin K-L, Chang Y-Z (2013) Determination of di-(2-ethylhexyl)phthalate (DEHP) metabolites in human hair using liquid chromatography-tandem mass spectrometry. Clin Chim Acta 420:155–159

    Article  CAS  Google Scholar 

  16. Tzatzarakis MN, Vakonaki E, Kavvalakis MP, Barmpas M, Kokkinakis EN, Xenos K, Tsatsakis AM (2015) Biomonitoring of bisphenol A in hair of Greek population. Chemosphere 118:336–341

    Article  CAS  Google Scholar 

  17. Aleksa K, Liesivuori J, Koren G (2012) Hair as a biomarker of polybriminated diethylethers’exposure in infants, children and adults. Toxicol Letters 210:198–202

    Article  CAS  Google Scholar 

  18. Bessette EE, Yasa I, Dunbar D, Wilkens LR, Le Marchand L, Turesky RJ (2009) Biomonitoring of carcinogenic heterocyclic aromatic amines in hair: a validation study. Chem Res Toxicol 22:1454–1463

    Article  CAS  Google Scholar 

  19. Dulaurent S, Gaulier JM, Imbert L, Morla A, Lachatre G (2014) Simultaneous determination of Δ9-tetrahydrocannabinol, cannabidiol, cannabinol and 11-nor- Δ9-tetrahydrocannabinol-9-carboxylic acid in hair using liquid chromatography-tandem mass spectrometry. Forensic Sci Int 236:151–156

    Article  CAS  Google Scholar 

  20. Goodpaster JV, Drumheller BC, Benner BA (2003) Evaluation of extraction techniques for the forensic analysis of human scalp hair using gas chromatography/mass spectrometry (GC/MS). J Forensic Sci 48:1–8

    Article  Google Scholar 

  21. Ebrahimi M, Eshaghi Z, Samadi F, Hosseini M-S (2011) Ionic liquid mediated sol–gel sorbents for hollow fibre solid-phase microextraction of pesticide residues in water and hair samples. J Chromatogr A 1218:8313–8321

    Article  CAS  Google Scholar 

  22. Tsatsakis AM, Barbounis MG, Kavalakis M, Kokkinakis M, Terzi I, Tzatzarakis MN (2010) Determination of dialkyl phosphates in human hair for the biomonitoring of exposure to organophosphate pesticides. J Chromatogr B 878:1246–1252

    Article  CAS  Google Scholar 

  23. Duca RC, Salquebre G, Hardy E, Appenzeller BMR (2014) Comparison of solid phase- and liquid/liquid-extraction for the purification of hair extract prior to multiclass pesticides analysis. J Chromatogr B 955–956:98–107

    Article  Google Scholar 

  24. Schramm KW (2008) Hair biomonitoring of organic pollutants. Chemosphere 72:1103–1111

    Article  CAS  Google Scholar 

  25. Kucharska A, Covaci A, Vanermen G, Voorspoels S (2014) Development of a broad spectrum method for measuring flame retardants—overcoming the challenges of non-invasive human biomonitoring studies. Anal Bioanal Chem 406:6665–6675

    Article  CAS  Google Scholar 

  26. Kucharska A, Covaci A, Vanermen G, Voorspoels S (2015) Non-invasive biomonitoring for PFRs and PBDEs: new insights in analysis of human hair externally exposed to selected flame retardants. Sci Total Environ 505:1062–1071

    Article  CAS  Google Scholar 

  27. Tadeo JL, Sánchez-Brunete C, Miguel E (2009) Determination of polybrominated diphenyl ethers in human hair by gas chromatography–mass spectrometry. Talanta 78:138–143

    Article  CAS  Google Scholar 

  28. Lertsirisopon R, Soda S, Sei K, Ike M (2009) Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation. J Environ Sci 21:285–290

    Article  CAS  Google Scholar 

  29. Alves A, Kucharska A, Erratico C, Xu F, Den Hond E, Koppen G, Vanermen G, Covaci A, Voorspoels S (2014) Human biomonitoring of emerging pollutants through non-invasive matrices: state of the art and future potential. Anal Bioanal Chem 406(17):4063–4088

    Article  CAS  Google Scholar 

  30. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) (2015) Analytical Procedures and Methods Validation for Drugs and Biologics, Guidance for Industry, pp. 3. http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm

  31. Shanmugam G, Ramawamy BR, RadhakrishnanV TH (2010) GC–MS method for the determination of paraben preservatives in the human breast cancerous tissue. Microchem J 96:391–396

    Article  CAS  Google Scholar 

  32. Król S, Namieśnik J, Zabiegała B (2014) Occurrence and levels of polybrominated diphenyl ethers (PBDEs) in house dust and hair samples from Northern Poland; an assessment of human exposure. Chemosphere 110:91–96

    Article  Google Scholar 

  33. Cousins AP, Holmgren T, Remberger M (2014) Emissions of two phthalate esters and BDE 209 to indoor air and their impact on urban air quality. Sci Total Environ 470–471:527–535

    Article  Google Scholar 

  34. Api AM (2001) Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients. Food Chem Toxicol 39(2):97–108

    Article  CAS  Google Scholar 

  35. Altshul L, Covaci A, Hauser R (2004) The relationship between levels of PCBs and pesticides in human hair and blood: preliminary results. Environ Health Perspect 112:1193–1199

    Article  CAS  Google Scholar 

  36. Covaci A, Tutudaki M, Tsatsakis AM, Schepens P (2002) Hair analysis: another approach for the assessment of human exposure to selected persistent organochlorine pollutants. Chemosphere 46:413–418

    Article  CAS  Google Scholar 

  37. Chojnacka K, Górecka H, Górecki H (2006) The effect of age, sex, smoking habit and hair color on the composition of hair. Environ Toxicol Pharmacol 22:52–57

    Article  CAS  Google Scholar 

  38. Reiner JL, Wong CM, Arcaro KF, Kannan K (2007) Synthetic musk fragrances in human milk from the United States. Environ Sci Technol 41:3815–3820

    Article  CAS  Google Scholar 

  39. Hond ED, Paulussen M, Geens T, Bruckers L, Baeyens W, David F, Dumont E, Loots I, Morrens B, de Bellevaux BN, Nelen V, Schoeters G, Van Larebeke N, Covaci A (2013) Biomarkers of human exposure to personal care products: results from the Flemish Environment and Health Study (FLEHS 2007–2011). Sci Total Environ 463–464:102–110

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Escuela Politécnica Superior, University of Seville, Spain for supporting this work.

Conflict of interest

The authors declare that that there is no conflict of interest concerning the study presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Möder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Electronic Supplementary Material. Table S1 Overview of procedures reported for the determination of different groups of organic pollutants in human hair. Fig. S1 Total ion chromatograms of GC-MS(SIM) analysis of hair extracts (non-spiked) a) treated with MeOH/TFA and extracted with ethyl acetate and b) treated with NaOH solution, then adjusted to pH 3 with acetic acid and extracted with ethyl acetate. Table S2 Blanks of the solvents used for the individual sample preparation steps and of the complete method without hair (n = 2). Values are given as amount per injection (PDF 453 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín, J., Möder, M., Gaudl, A. et al. Multi-class method for biomonitoring of hair samples using gas chromatography-mass spectrometry. Anal Bioanal Chem 407, 8725–8734 (2015). https://doi.org/10.1007/s00216-015-9026-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9026-2

Keywords

Navigation