Skip to main content
Log in

Profiling and relative quantification of multiply nitrated and oxidized fatty acids

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The levels of nitro fatty acids (NO2-FA), such as nitroarachidonic, nitrolinoleic, nitrooleic, and dinitrooleic acids, are elevated under various inflammatory conditions, and this results in different anti-inflammatory effects. However, other multiply nitrated and nitro-oxidized FAs have not been studied so far. Owing to the low concentrations in vivo, NO2-FA analytics usually relies on targeted gas chromatography–tandem mass spectrometry (MS/MS) or liquid chromatography–MS/MS, and thus require standard compounds for method development. To overcome this limitation and increase the number and diversity of analytes, we performed in-depth mass spectrometry (MS) profiling of nitration products formed in vitro by incubating fatty acids with NO2BF4, and ONOO-. The modified fatty acids were used to develop a highly specific and sensitive multiple reaction monitoring LC–MS method for relative quantification of 42 different nitrated and oxidized species representing three different groups: singly nitrated, multiply nitrated, and nitro-oxidized fatty acids. The method was validated in in vitro nitration kinetic studies and in a cellular model of nitrosative stress. NO2-FA were quantified in lipid extracts from 3-morpholinosydnonimine-treated rat primary cardiomyocytes after 15, 30, and 70 min from stress onset. The relatively high levels of dinitrooleic, nitroarachidonic, hydroxynitrodocosapenataenoic, nitrodocosahexaenoic, hydroxynitrodocosahexaenoic, and dinitrodocosahexaenoic acids confirm the presence of multiply nitrated and nitro-oxidized fatty acids in biological systems for the first time. Thus, in vitro nitration was successfully used to establish a targeted LC–MS/MS method that was applied to complex biological samples for quantifying diverse NO2-FA.

Schematic representation of study design which combined in vitro nitration of different fatty acids, MS/MS characterization and optimization of MRM method for relative quantification, which was applied to follow dynamic of fatty acid nitration in cellular model of SIN-1 treated cardiomyoctes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  CAS  Google Scholar 

  2. Wink DA, Hines HB, Cheng RYS, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89(6):873–891

    Article  CAS  Google Scholar 

  3. Wang GR, Zhu Y, Halushka PV, Lincoln TM, Mendelsohn ME (1998) Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc Natl Acad Sci U S A 95(9):4888–4893

    Article  CAS  Google Scholar 

  4. Riddell DR, Owen JS (1999) Nitric oxide and platelet aggregation. Vitam Horm 57:25–48

    Article  CAS  Google Scholar 

  5. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88(11):4651–4655

    Article  CAS  Google Scholar 

  6. Bloodsworth A, O'Donnell VB, Freeman BA (2000) Nitric oxide regulation of free radical- and enzyme-mediated lipid and lipoprotein oxidation. Arterioscler Thrombn Vasc Biol 20(7):1707–1715

    Article  CAS  Google Scholar 

  7. Liu X, Miller MJ, Joshi MS, Thomas DD, Lancaster JR Jr (1998) Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci U S A 95(5):2175–2179

    Article  CAS  Google Scholar 

  8. Moller MN, Li Q, Vitturi DA, Robinson JM, Lancaster JR Jr, Denicola A (2007) Membrane “lens” effect: focusing the formation of reactive nitrogen oxides from the NO/O2 reaction. Chem Res Toxicol 20(4):709–714

    Article  Google Scholar 

  9. Lima ES, Di Mascio P, Rubbo H, Abdalla DS (2002) Characterization of linoleic acid nitration in human blood plasma by mass spectrometry. Biochemistry 41(34):10717–10722

    Article  CAS  Google Scholar 

  10. Tsikas D, Zoerner AA, Mitschke A, Gutzki FM (2009) Nitro-fatty acids occur in human plasma in the picomolar range: a targeted nitro-lipidomics GC-MS/MS study. Lipids 44(9):855–865

    Article  CAS  Google Scholar 

  11. Trettin A, Bohmer A, Zoerner AA, Gutzki FM, Jordan J, Tsikas D (2014) GC-MS/MS and LC-MS/MS studies on unlabelled and deuterium-labelled oleic acid (C18:1) reactions with peroxynitrite (O = N-O-O(-)) in buffer and hemolysate support the pM/nM-range of nitro-oleic acids in human plasma. J Chromatogr B Anal Technol Biomed Life Sci 964:172–179

    Article  CAS  Google Scholar 

  12. Bonacci G, Baker PR, Salvatore SR, Shores D, Khoo NK, Koenitzer JR, Vitturi DA, Woodcock SR, Golin-Bisello F, Cole MP, Watkins S, St Croix C, Batthyany CI, Freeman BA, Schopfer FJ (2012) Conjugated linoleic acid is a preferential substrate for fatty acid nitration. J Biol Chem 287(53):44071–44082

    Article  CAS  Google Scholar 

  13. Tsikas D, Zoerner A, Mitschke A, Homsi Y, Gutzki FM, Jordan J (2009) Specific GC-MS/MS stable-isotope dilution methodology for free 9- and 10-nitro-oleic acid in human plasma challenges previous LC-MS/MS reports. J Chromatogr B Anal Technol Biomed Life Sci 877(26):2895–2908

    Article  CAS  Google Scholar 

  14. Baker PR, Schopfer FJ, Sweeney S, Freeman BA (2004) Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation. Proc Natl Acad Sci U S A 101(32):11577–11582

    Article  CAS  Google Scholar 

  15. Baker PR, Lin Y, Schopfer FJ, Woodcock SR, Groeger AL, Batthyany C, Sweeney S, Long MH, Iles KE, Baker LM, Branchaud BP, Chen YE, Freeman BA (2005) Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J Biol Chem 280(51):42464–42475

    Article  CAS  Google Scholar 

  16. Salvatore SR, Vitturi DA, Baker PR, Bonacci G, Koenitzer JR, Woodcock SR, Freeman BA, Schopfer FJ (2013) Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine. J Lipid Res 54(7):1998–2009

    Article  CAS  Google Scholar 

  17. Ferreira AM, Ferrari MI, Trostchansky A, Batthyany C, Souza JM, Alvarez MN, Lopez GV, Baker PR, Schopfer FJ, O'Donnell V, Freeman BA, Rubbo H (2009) Macrophage activation induces formation of the anti-inflammatory lipid cholesteryl-nitrolinoleate. Biochem J 417(1):223–234

    Article  CAS  Google Scholar 

  18. Nadtochiy SM, Baker PR, Freeman BA, Brookes PS (2009) Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovasc Res 82(2):333–340

    Article  CAS  Google Scholar 

  19. Khoo NK, Freeman BA (2010) Electrophilic nitro-fatty acids: anti-inflammatory mediators in the vascular compartment. Curr Opin Pharmacol 10(2):179–184

    Article  CAS  Google Scholar 

  20. Rubbo H (2013) Nitro-fatty acids: novel anti-inflammatory lipid mediators. Braz J Med Biol Res 46(9):728–734

    Article  CAS  Google Scholar 

  21. Freeman BA, Baker PR, Schopfer FJ, Woodcock SR, Napolitano A, d'Ischia M (2008) Nitro-fatty acid formation and signaling. J Biol Chem 283(23):15515–15519

    Article  CAS  Google Scholar 

  22. Ferreira AM, Minarrieta L, Lamas Bervejillo M, Rubbo H (2012) Nitro-fatty acids as novel electrophilic ligands for peroxisome proliferator-activated receptors. Free Radic Biol Med 53(9):1654–1663

    Article  CAS  Google Scholar 

  23. Li Y, Paonessa JD, Zhang Y (2012) Mechanism of chemical activation of Nrf2. PLoS ONE 7(4), e35122

    Article  CAS  Google Scholar 

  24. Kansanen E, Bonacci G, Schopfer FJ, Kuosmanen SM, Tong KI, Leinonen H, Woodcock SR, Yamamoto M, Carlberg C, Yla-Herttuala S, Freeman BA, Levonen AL (2011) Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem 286(16):14019–14027

    Article  CAS  Google Scholar 

  25. Wright MM, Schopfer FJ, Baker PR, Vidyasagar V, Powell P, Chumley P, Iles KE, Freeman BA, Agarwal A (2006) Fatty acid transduction of nitric oxide signaling: nitrolinoleic acid potently activates endothelial heme oxygenase 1 expression. Proc Natl Acad Sci U S A 103(11):4299–4304

    Article  CAS  Google Scholar 

  26. Trostchansky A, Bonilla L, Thomas CP, O'Donnell VB, Marnett LJ, Radi R, Rubbo H (2011) Nitroarachidonic acid, a novel peroxidase inhibitor of prostaglandin endoperoxide H synthases 1 and 2. J Biol Chem 286(15):12891–12900

    Article  CAS  Google Scholar 

  27. Gonzalez-Perilli L, Alvarez MN, Prolo C, Radi R, Rubbo H, Trostchansky A (2013) Nitroarachidonic acid prevents NADPH oxidase assembly and superoxide radical production in activated macrophages. Free Radic Biol Med 58:126–133

    Article  CAS  Google Scholar 

  28. Klinke A, Moller A, Pekarova M, Ravekes T, Friedrichs K, Berlin M, Scheu KM, Kubala L, Kolarova H, Ambrozova G, Schermuly RT, Woodcock SR, Freeman BA, Rosenkranz S, Baldus S, Rudolph V, Rudolph TK (2014) Protective effects of 10-nitro-oleic acid in a hypoxia-induced murine model of pulmonary hypertension. Am J Respir Cell Mol Biol 51(1):155–162

    Article  Google Scholar 

  29. Rudolph TK, Rudolph V, Edreira MM, Cole MP, Bonacci G, Schopfer FJ, Woodcock SR, Franek A, Pekarova M, Khoo NKH, Hasty AH, Baldus S, Freeman BA (2010) Nitro–fatty acids reduce atherosclerosis in apolipoprotein E–deficient mice. Arterioscler Thromb Vasc Biol 30(5):938–945

    Article  CAS  Google Scholar 

  30. Zheng R, Heck DE, Black AT, Gow A, Laskin DL, Laskin JD (2014) Regulation of keratinocyte expression of stress proteins and antioxidants by the electrophilic nitrofatty acids 9- and 10-nitrooleic acid. Free Radic Bol Med 67:1–9

    Article  CAS  Google Scholar 

  31. Trostchansky A, Souza JM, Ferreira A, Ferrari M, Blanco F, Trujillo M, Castro D, Cerecetto H, Baker PR, O'Donnell VB, Rubbo H (2007) Synthesis, isomer characterization, and anti-inflammatory properties of nitroarachidonate. Biochemistry 46(15):4645–4653

    Article  CAS  Google Scholar 

  32. Bonilla L, O'Donnell VB, Clark SR, Rubbo H, Trostchansky A (2013) Regulation of protein kinase C by nitroarachidonic acid: impact on human platelet activation. Arch Biochem Biophys 533(1-2):55–61

    Article  CAS  Google Scholar 

  33. Ieda N, Nakagawa H, Peng T, Yang D, Suzuki T, Miyata N (2012) Photocontrollable peroxynitrite generator based on N-methyl-N-nitrosoaminophenol for cellular application. J Am Chem Soc 134(5):2563–2568

    Article  CAS  Google Scholar 

  34. Guy A, Oger C, Heppekausen J, Signorini C, De Felice C, Furstner A, Durand T, Galano JM (2014) Oxygenated metabolites of n-3 polyunsaturated fatty acids as potential oxidative stress biomarkers: total synthesis of 8-F3t-IsoP, 10-F4t-NeuroP and [D4]-10-F4t-NeuroP. Chemistry 20(21):6374–6380

    Article  CAS  Google Scholar 

  35. Oger C, Bultel-Ponce V, Guy A, Balas L, Rossi JC, Durand T, Galano JM (2010) The handy use of Brown's P2-Ni catalyst for a skipped diyne deuteration: application to the synthesis of a [D4]-labeled F4t-neuroprostane. Chemistry 16(47):13976–13980

    Article  CAS  Google Scholar 

  36. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49(5):1137–1146

    Article  CAS  Google Scholar 

  37. Bonacci G, Asciutto EK, Woodcock SR, Salvatore SR, Freeman BA, Schopfer FJ (2011) Gas-phase fragmentation analysis of nitro-fatty acids. J Am Soc Mass Spectrom 22(9):1534–1551

    Article  CAS  Google Scholar 

  38. Woodcock SR, Bonacci G, Gelhaus SL, Schopfer FJ (2013) Nitrated fatty acids: synthesis and measurement. Free Radic Biol Med 59:14–26

    Article  CAS  Google Scholar 

  39. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  40. Huie RE (1994) The reaction kinetics of NO2. Toxicology 89(3):193–216

    Article  CAS  Google Scholar 

  41. Jezek J, Jaburek M, Zelenka J, Jezek P (2010) Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling. Physiol Res 59(5):737–747

    CAS  Google Scholar 

  42. Rashba-Step J, Tatoyan A, Duncan R, Ann D, Pushpa-Rehka TR, Sevanian A (1997) Phospholipid peroxidation induces cytosolic phospholipase A2 activity: membrane effects versus enzyme phosphorylation. Arch Biochem Biophys 343(1):44–54

    Article  CAS  Google Scholar 

  43. Tsikas D, Zoerner AA, Jordan J (2011) Oxidized and nitrated oleic acid in biological systems: analysis by GC-MS/MS and LC-MS/MS, and biological significance. Biochim Biophys Acta 1811(11):694–705

    Article  CAS  Google Scholar 

  44. Milne GL, Musiek ES, Morrow JD (2005) F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers 10(Suppl 1):S10–S23

    Article  CAS  Google Scholar 

  45. Montuschi P, Barnes PJ, Roberts LJ (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18(15):1791–1800

    Article  CAS  Google Scholar 

  46. Ricciotti E, FitzGerald GA (2011) Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol 31(5):986–1000

    Article  CAS  Google Scholar 

  47. Lee SE, Park YS (2013) Role of lipid peroxidation-derived α, ß-unsaturated aldehydes in vascular dysfunction. Oxid Med Cell Longev 2013:629028

    Google Scholar 

  48. Lim DG, Sweeney S, Bloodsworth A, White CR, Chumley PH, Krishna NR, Schopfer F, O'Donnell VB, Eiserich JP, Freeman BA (2002) Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity. Proc Natl Acad Sci U S A 99(25):15941–15946

    Article  CAS  Google Scholar 

  49. Coles B, Bloodsworth A, Eiserich JP, Coffey MJ, McLoughlin RM, Giddings JC, Lewis MJ, Haslam RJ, Freeman BA, O'Donnell VB (2002) Nitrolinoleate inhibits platelet activation by attenuating calcium mobilization and inducing phosphorylation of vasodilator-stimulated phosphoprotein through elevation of cAMP. J Biol Chem 277(8):5832–5840

    Article  CAS  Google Scholar 

  50. Coles B, Bloodsworth A, Clark SR, Lewis MJ, Cross AR, Freeman BA, O'Donnell VB (2002) Nitrolinoleate inhibits superoxide generation, degranulation, and integrin expression by human neutrophils: novel antiinflammatory properties of nitric oxide-derived reactive species in vascular cells. Circ Res 91(5):375–381

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ralf Hoffmann (Institute of Bioanalytical Chemistry, University of Leipzig) for providing access to his laboratories and instruments. Financial support from the European Regional Development Fund (European Union and the Free State of Saxony; 100146238 and 100121468 to M.F.) and a stipend to I.M. provided by Universität Leipzig are gratefully acknowledged.

Authors’ contributions

I.M. performed all experimental work, corresponding data evaluation, and contributed to the writing of the manuscript. E.G. and V.V. designed the cell model of nitrosative stress and performed cell culture experiments. N.I., H.N., and N.M. provided the peroxynitrite donor 2,3,5,6-tetramethyl-4-(methylnitrosoamino)phenol. J.M.G., C.O., and T.D. provided internal standards used for liquid chromatography–tandem mass pectrometry. M.F. conceived and designed all experiments and contributed to the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fedorova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milic, I., Griesser, E., Vemula, V. et al. Profiling and relative quantification of multiply nitrated and oxidized fatty acids. Anal Bioanal Chem 407, 5587–5602 (2015). https://doi.org/10.1007/s00216-015-8766-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8766-3

Keywords

Navigation