Skip to main content
Log in

pH sensitivity of FRET reporters based on cyan and yellow fluorescent proteins

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

It is generally acknowledged that the popular cyan and yellow fluorescent proteins carried by genetically encoded reporters suffer from strong pH sensitivities close to the physiological pH range. We studied the consequences of these pH responses on the intracellular signals of model Förster resonant energy transfer (FRET) tandems and FRET-based reporters of cAMP-dependent protein kinase activity (AKAR) expressed in the cytosol of living BHK cells, while changing the intracellular pH by means of the nigericin ionophore. Although the simultaneous pH sensitivities of the donor and the acceptor may mask each other in some cases, the magnitude of the perturbations can be very significant, as compared to the functional response of the AKAR biosensor. Replacing the CFP donor by the spectrally identical, but pH-insensitive Aquamarine variant (pK1/2 = 3.3) drastically modifies the biosensor pH response and gives access to the acid transition of the yellow acceptor. We developed a simple model of pH-dependent FRET and used it to describe the expected pH-induced changes in fluorescence lifetime and ratiometric signals. This model qualitatively accounts for most of the observations, but reveals a complex behavior of the cytosolic AKAR biosensor at acid pHs, associated to additional FRET contributions. This study underlines the major and complex impact of pH changes on the signal of FRET reporters in the living cell.

The complex behaviour of a cytosolic FRET construct carrying cyan and yellow fluorescent proteins in conditions of varying pH is well described by a simple analytical model. Changing the ECFP donor for an Aquamarine unveils the strong pH sensitivity of the yellow acceptor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614–3666

    Article  CAS  Google Scholar 

  2. Conway JRW, Carragher NO, Timpson P (2014) Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 14:314–328

    Article  CAS  Google Scholar 

  3. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260

    Article  CAS  Google Scholar 

  4. Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599

    Article  CAS  Google Scholar 

  5. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci 95:6803–6808

    Article  CAS  Google Scholar 

  6. Wachter RM, Yarbrough D, Kallio K, Remington SJ (2000) Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein. J Mol Biol 301:157–171

    Article  CAS  Google Scholar 

  7. Esposito A, Gralle M, Dani MAC, Lange D, Wouters FS (2008) pHlameleons: a family of FRET-based protein sensors for quantitative pH imaging. Biochemistry 47:13115–13126

    Article  CAS  Google Scholar 

  8. Bencina M (2013) Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors. Sensors 13:16736–16758

    Article  Google Scholar 

  9. Dupre-Crochet S, Erard M, Nusse O (2013) ROS production in phagocytes: why, when, and where? J Leukoc Biol 94:657–670

    Article  CAS  Google Scholar 

  10. De Michele R, Carimi F, Frommer WB (2014) Mitochondrial biosensors. Int J Biochem Cell Biol 48:39–44

    Article  Google Scholar 

  11. Salonikidis PS, Niebert M, Ullrich T, Bao G, Zeug A, Richter DW (2011) An ion-insensitive cAMP biosensor for long term quantitative ratiometric fluorescence resonance energy transfer (FRET) measurements under variable physiological conditions. J Biol Chem 286:23419–23431

    Article  CAS  Google Scholar 

  12. Krause K-H, Milos M, Luan-Rilliet Y, Lew DP, Cox JA (1991) Thermodynamics of cation binding to rabbit skeletal muscle calsequestrin. J Biol Chem 266:9453–9459

    CAS  Google Scholar 

  13. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61

    Article  CAS  Google Scholar 

  14. Lang F, Hoffmann EK (2012) Role of ion transport in control of apoptotic cell death. Compr Physiol 2:2037–2061

    Google Scholar 

  15. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    CAS  Google Scholar 

  16. Markwardt ML, Kremers G-J, Kraft CA, Ray K, Cranfill PJC, Wilson KA, Day RN, Wachter RM, Davidson MW, Rizzo MA (2011) An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS One 6:e17896

    Article  CAS  Google Scholar 

  17. Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93 %. Nat Commun 3:751

    Article  Google Scholar 

  18. Erard M, Fredj A, Pasquier H, Betolngar D-B, Bousmah Y, Derrien V, Vincent P, Merola F (2013) Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. Mol Biosyst 8:258–267

    Article  Google Scholar 

  19. Mérola F, Fredj A, Betolngar D-B, Ziegler C, Erard M, Pasquier H (2014) Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging. Biotechnol J 9:180–191

    Article  Google Scholar 

  20. Grailhe R, Merola F, Ridard J, Couvignou S, Le Poupon C, Changeux JP, Laguitton-Pasquier H (2006) Monitoring protein interactions in the living cell through the fluorescence decays of the cyan fluorescent protein. ChemPhysChem 7:1442–1454

    Article  CAS  Google Scholar 

  21. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Article  CAS  Google Scholar 

  22. Poea-Guyon S, Ammar MR, Erard M, Amar M, Moreau AW, Fossier P, Gleize V, Vitale N, Morel N (2013) The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery. J Cell Biol 203:283–298

    Article  CAS  Google Scholar 

  23. Han J, Loudet A, Barhoumi R, Burghardt RC, Burgess K (2009) A ratiometric pH reporter for imaging protein-dye conjugates in living cells. J Am Chem Soc 131:1642–1643

    Article  CAS  Google Scholar 

  24. Poea-Guyon S, Pasquier H, Mérola F, Morel N, Erard M (2013) The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging. Anal Bioanal Chem 405:3983–3987

    Article  CAS  Google Scholar 

  25. Polito M, Vincent P, Guiot E (2014) Biosensor imaging in brain slice preparations. Methods Mol Biol 1071:175–194

    Article  CAS  Google Scholar 

  26. Wachter RM, Remington SJ (1999) Sensitivity of the yellow variant of green fluorescent protein to halides and nitrate. Curr Biol 9:R628–R629

    Article  CAS  Google Scholar 

  27. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194

    Article  CAS  Google Scholar 

  28. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  Google Scholar 

  29. Fredj A, Pasquier H, Demachy I, Jonasson G, Levy B, Derrien V, Bousmah Y, Manoussaris G, Wien F, Ridard J, Erard M, Merola F (2012) The single T65S mutation generates brighter cyan fluorescent proteins with increased photostability and pH insensitivity. PLoS One 7:e49149

    Article  CAS  Google Scholar 

  30. Nakabayashi T, Oshita S, Sumikawa R, Sun F, Kinjo M, Ohta N (2012) pH dependence of the fluorescence lifetime of enhanced yellow fluorescent protein in solution and cells. J Photochem Photobiol Chem 235:65–71

    Article  CAS  Google Scholar 

  31. Bregestovski P (2009) Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channels activity. Front Mol Neurosci. doi:10.3389/neuro.02.015.2009

    Google Scholar 

  32. Dunn TA, Wang C-T, Colicos MA, Zaccolo M, DiPilato LM, Zhang J, Tsien RY, Feller MB (2006) Imaging of cAMP Levels and protein kinase a activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci 26:12807–12815

    Article  CAS  Google Scholar 

  33. Depry C, Allen MD, Zhang J (2011) Visualization of PKA activity in plasma membrane microdomains. Mol Biosyst 7:52–58

    Article  CAS  Google Scholar 

  34. Hoppe A, Christensen K, Swanson JA (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 83:3652–3664

    Article  CAS  Google Scholar 

  35. Van Rheenen J, Langeslag M, Jalink K (2004) Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. Biophys J 86:2517–2529

    Article  Google Scholar 

  36. Zeug A, Woehler A, Neher E, Ponimaskin EG (2012) Quantitative intensity-based FRET approaches—a comparative snapshot. Biophys J 103:1821–1827

    Article  CAS  Google Scholar 

  37. Boyarsky G, Hanssen C, Clyne LA (1996) Superiority of in vitro over in vivo calibrations of BCECF in vascular smooth muscle cells. FASEB J 10:1205–1212

    CAS  Google Scholar 

Download references

Acknowledgments

D.B.B. was the recipient of a doctoral grant from Region Ile-de-France (DIM Nanosciences IdF). We acknowledge supports from the Fondation pour la Recherche Médicale, the Centre National de la Recherche Scientifique through the program NEEDS and Paris-Sud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Mérola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betolngar, DB., Erard, M., Pasquier, H. et al. pH sensitivity of FRET reporters based on cyan and yellow fluorescent proteins. Anal Bioanal Chem 407, 4183–4193 (2015). https://doi.org/10.1007/s00216-015-8636-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8636-z

Keywords

Navigation