Skip to main content

Advertisement

Log in

Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schaeberle MD, Morris HR, Turner JF II, Treado PJ (1999) Peer reviewed: Raman chemical imaging spectroscopy. Anal Chem 71:175A–181A

    Article  CAS  Google Scholar 

  2. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2976

    Article  CAS  Google Scholar 

  3. Tu AT (2003) Use of Raman spectroscopy in biological compounds. J Chin Chem Soc 50:1–10

    CAS  Google Scholar 

  4. Peticolas WL (1975) Application of Raman spectroscopy to biological macromolecules. Biochimie 57:417–428

    Article  CAS  Google Scholar 

  5. Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481

    Article  CAS  Google Scholar 

  6. Nishino M, Yamashita S, Aoba T, Okazaki M, Moriwaki Y (1981) The laser-Raman spectroscopic studies on human enamel and precipitated carbonate-containing apatites. J Dent Res 60:751–755

    Article  CAS  Google Scholar 

  7. Kravitz LC, Kingsley JD, Elkin EL (1968) Raman and infrared studies of coupled PO4 3- vibrations. J Chem Phys 49:4600–4610

    Article  CAS  Google Scholar 

  8. Pezzotti G (2013) Raman spectroscopy of piezoelectrics. J Appl Phys 113:211301-1–78

  9. Pezzotti G, Okai K, Zhu W (2012) Stress tensor dependence of the polarized Raman spectrum of tetragonal barium titanate. J Appl Phys 111:013504-1–16

  10. Pezzotti G, Hagiwara H, Zhu W (2013) Quantitative investigation of Raman selection rules and validation of the secular equation for trigonal LiNbO3. J Phys D: Appl Phys 46:145103-1-13

  11. Takahashi Y, Puppulin L, Zhu W, Pezzotti G (2010) Raman tensor analysis of ultra-high molecular weight polyethylene and its application to study retrieved hip joint components. Acta Biomater 6:3583–3594

    Article  CAS  Google Scholar 

  12. Tsuda H, Arends J (1994) Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites. J Dent Res 73:1703–1710

    CAS  Google Scholar 

  13. Tsuda H, Arends J (1997) Raman spectroscopy in dental research: a short review of recent studies. Adv Dent Res 11:539–547

    Article  CAS  Google Scholar 

  14. Ko AC-T, Choo-Smith L-P, Hewko M, Leonardi L, Sowa MG, Dong CCS, Williams P, Cleghorn B (2005) Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. J Biomed Opt 10:031118-1-16

  15. Ko AC-T, Choo-Smith L-P, Hewko M, Sowa MG, Dong CCS, Cleghorn B (2006) Detection of early dental caries using polarized Raman spectroscopy. Opt Express 14:203–215

    Article  CAS  Google Scholar 

  16. Ko AC, Hewko M, Sowa MG, Dong CCS, Cleghorn B, Choo-Smith L-P (2008) Early dental caries detection using a fibre-optic coupled polarization-resolved Raman spectroscopic system. Opt Express 16:6274–6284

    Article  CAS  Google Scholar 

  17. Ionita I (2009) Diagnosis of tooth decay using polarized micro-Raman confocal spectroscopy. Romanian Rep Phys 61:567–574

    CAS  Google Scholar 

  18. Choo-Smith L-P, Dong CCS, Cleghorn B, Hewko M (2008) Shedding new light on early caries detection. J Can Dent Assoc 74:913–918

    Google Scholar 

  19. Choo-Smith L-P, Hewko M, Sowa M (2010) Towards early dental caries detection with OCT and polarized Raman spectroscopy. Opt Express 2:O43

    Google Scholar 

  20. Hill W, Petrou V (2000) Caries detection by diode laser Raman spectroscopy. Appl Spectrosc 54:795–99

    Article  CAS  Google Scholar 

  21. Prabhakar NK, Kiran KN, Kala M (2011) A review of modern non-invasive methods for caries diagnosis. Arch Oral Sci Res 1:168–177

    Google Scholar 

  22. Ten Cate AR (2008) Oral Histology: Development, Structure, and Function. Mosby Elsevier, St Louis, p 3

    Google Scholar 

  23. Companion paper to this article

  24. Grisafe DA, Hummel FA (1970) Pentavalent ion substitutions in the apatite structure, part B. Color. J Solid State Chem 2:167–175

    Article  CAS  Google Scholar 

  25. Gilinskaya LG, Mashkovtsev RI (1995) Blue and green centers in natural apatites by ESR and optical spectroscopy data. J Struct Chem 36:76–86

    Article  Google Scholar 

  26. Porto SPS, Krishnan RS (1967) Raman effect of corundum. J Phys Chem 47:1009–1012

    Article  CAS  Google Scholar 

  27. MATHEMATICA 7.0, Wolfram Research, Inc.: Champaign, IL, USA

  28. Sanchez-Pastenes E, Reyes-Gasga J (2005) Determination of the point and space groups for hydroxyapatite by computer simulation of CBED electron diffraction patterns. Rev Mexic Fis 51:525–529

    CAS  Google Scholar 

  29. Corno M, Busco C, Civalleri B, Ugliengo P (2006) Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Phys Chem Chem Phys 8:2464–2472

    Article  CAS  Google Scholar 

  30. Loudon R (1964) The Raman effect in crystals. Adv Phys 13:423–482

    Article  CAS  Google Scholar 

  31. van Gurp M (1995) The use of rotation matrices in the mathematical description of molecular orientation in polymers. Colloid Polym Sci 273:607–625

    Article  Google Scholar 

  32. Wigner EP (1959) Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York

    Google Scholar 

  33. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  34. Perez R, Banda S, Ounaies Z (2008) Determination of the orientation distribution function in aligned single wall nanotube polymer nanocomposites by polarized Raman spectroscopy. J Appl Phys 103:074302-1-9

  35. Simmons LM, Al-Jawad M, Kilcoyne SH, Wood DJ (2011) Distribution of enamel crystallite orientation through an entire tooth crown studied using synchrotron X-ray diffraction. Eur J Oral Sci 119:19–24

    Article  Google Scholar 

  36. Mahoney P (2012) Incremental enamel development in modern human deciduous anterior teeth. Am J Phys Anthropol 147:637–651

    Article  Google Scholar 

  37. Fernandes CP, Chevitarese O (1991) The orientation and direction of rods in dental enamel. J Prosthet Dent 65:793–800

    Article  CAS  Google Scholar 

  38. Scott JH, Symons NBB (1982) Introduction to Dental Anatomy. Churchill Livingstone, Edinburgh

    Google Scholar 

  39. Bechtle S, Habelitz S, Klocke A, Fett T, Schneider GA (2010) The fracture behavior of dental enamel. Biomaterial 31:375–384

    Article  CAS  Google Scholar 

  40. Johansen E (1965) Tooth enamel: its composition, properties, and fundamental structure. Wright and Sons, Bristol

    Google Scholar 

  41. Wilson RM, Elliot JC, Dowker SEP (1999) Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am Mineral 84:1406–1414

    CAS  Google Scholar 

  42. Al-Jawad M, Steuwer A, Kilcoyne SH, Shore RC, Cywinski R, Wood DJ (2007) 2D mapping of texture and lattice parameters of dental enamel. Biomaterial 28:2908–2914

    Article  CAS  Google Scholar 

  43. Nelson DGA, Williamson BE (1982) Low-temperature laser Raman spectroscopy of synthetic carbonated apatites and dental enamel. Aust J Chem 35:715–727

    Article  CAS  Google Scholar 

  44. Legeros RZ (1990) Chemical and crystallographic events in the caries process. J Dent Res 69:567–574

    CAS  Google Scholar 

  45. Apap M, Goldberg G (1985) A new microsample grinding technique for quantitative determination of calcium and phosphorus in dental enamel. J Dent Res 11:1293–1295

    Article  Google Scholar 

  46. Rey C, Collins B, Goehl T, Dickson RI, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164

    Article  CAS  Google Scholar 

  47. Sauer GR, Zunic WB, Durig JR, Wuthier RE (1994) Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates. Calcif Tissue Int 54:414–420

    Article  CAS  Google Scholar 

  48. Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposit of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age: 1. Investigations in the v 4 PO4 domain. Calcif Tissue Int 46:384–394

    Article  CAS  Google Scholar 

  49. Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the v 3 PO4 domain. Calcif Tissue Int 49:383–388

    Article  CAS  Google Scholar 

  50. Trombe JC (1973) Contribution à l'étude de la décomposition et de la réactivité de certaines apatites hydroxylées et carbonates. Ann Chim Paris 8:251–269

    CAS  Google Scholar 

  51. De Mul FFM, Hottenhuis MHJ, Bouter P, Greve J, Arends J, Ten Bosch JJ (1986) Micro-Raman line broadening in synthetic carbonated hydroxyapatite. J Dent Res 65:437–440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pezzotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezzotti, G., Zhu, W., Boffelli, M. et al. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations. Anal Bioanal Chem 407, 3325–3342 (2015). https://doi.org/10.1007/s00216-015-8472-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8472-1

Keywords

Navigation