Skip to main content
Log in

A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Prostate specific antigen (PSA) is a significant and the most widely used biomarker for the early diagnosis of prostate cancer and its subsequent treatment. A MoS2 nanosheet is a two-dimensional (2D) layered nanomaterial analogous to graphene. However, a MoS2 nanosheet has a higher fluorescence-quenching ability than graphene when applied to a dye-labeled single-stranded DNA probe. In this work, we propose a novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor that detects PSA. The binding of the aptamer to the target PSA induces a rigid aptamer structure which makes the integration with the MoS2 nanosheet very weak. This results in the release of the aptamer probe from the nanosheet surface and restores the quenched fluorescence. This approach has the advantage of simple design and rapid detection of PSA. The biosensor has the merits of high sensitivity and high selectivity with a detection limit for the PSA of 0.2 ng/mL. The biosensor was also successfully applied to the detection of PSA in human serum samples with satisfactory results. The foregoing indicates its promising application to real-life biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005) Cancer statistics. CA Cancer J Clin 55:10–30

    Article  Google Scholar 

  2. Maruvada P, Wang W, Wagner PD, Srivastava S (2005) Biomarkers in molecular medicine: cancer detection and diagnosis. Biotechniques 38:S9–S15

    Article  Google Scholar 

  3. Polascik TJ, Oesterling JE, Partin AW (1999) Prostate specific antigen: a decade of discovery–what we have learned and where we are going. J Urology 162:293–306

    Article  CAS  Google Scholar 

  4. Wang H, Zhang Y, Yu H, Wu D, Ma H, Li H, Du B, Wei Q (2013) Label-free electrochemical immunosensor for prostate-specific antigen based on silver hybridized mesoporous silica nanoparticles. Anal Biochem 434:123–127

    Article  CAS  Google Scholar 

  5. Ding L, You J, Kong R, Qu F (2013) Signal amplification strategy for sensitive immunoassay of prostate specific antigen (PSA) based on ferrocene incorporated polystyrene spheres. Anal Chim Acta 793:19–25

    Article  CAS  Google Scholar 

  6. Liu D, Huang X, Wang Z, Jin A, Sun X, Zhu L, Wang F, Ma Y, Niu G, Walker ARH, Chen X (2013) Gold nanoparticle-based activatable probe for sensing ultralow levels of prostate-specific antigen. ACS Nano 7:5568–5576

    Article  CAS  Google Scholar 

  7. Matsumoto K, Konishi N, Hiasa Y, Kimura E, Takahashi Y, Shinohara K, Samori T (1999) A highly sensitive enzyme-linked immunoassay for serum free prostate specific antigen (f-PSA). Clin Chim Acta 281:57–69

    Article  CAS  Google Scholar 

  8. Matsuya T, Tashiro S, Hoshino N, Shibata N, Nagasaki Y, Kataoka K (2003) A core-shell-type fluorescent nanosphere possessing reactive poly(ethylene glycol) tethered chains on the surface for zeptomole detection of protein in time-resolved fluorometric immunoassay. Anal Chem 75:6124–6132

    Article  CAS  Google Scholar 

  9. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  CAS  Google Scholar 

  10. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  11. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  12. Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424–2434

    Article  CAS  Google Scholar 

  13. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Edit 48:4785–4787

    Article  CAS  Google Scholar 

  14. Liu JW, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem 79:4120–4125

    Article  CAS  Google Scholar 

  15. Famulok M, Mayer G, Blind M (2000) Nucleic acid aptamers from selection in vitro to applications in vivo. Acc Chem Res 33:591–599

    Article  CAS  Google Scholar 

  16. Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113:2842–2862

    Article  CAS  Google Scholar 

  17. Bunka DHJ, Stockley PG (2006) Aptamers come of age–at last. Nat Rev Microbiol 4:588–596

    Article  CAS  Google Scholar 

  18. O’Sullivan CK (2002) Aptasensors–the future of biosensing? Anal Bioanal Chem 372:44–48

    Article  Google Scholar 

  19. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    Article  CAS  Google Scholar 

  20. Zhang J, Wang LH, Zhang H, Boey F, Song SP, Fan CH (2010) Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small 6:201–204

    Article  CAS  Google Scholar 

  21. Zhang CY, Johnson LW (2009) Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem 81:3051–3055

    Article  CAS  Google Scholar 

  22. Tang ZW, Mallikaratchy P, Yang RH, Kim YM, Zhu Z, Wang H, Tan W (2008) Aptamer switch probe based on intramolecular displacement. J Am Chem Soc 130:11268–11269

    Article  CAS  Google Scholar 

  23. Baker BR, Lai RY, Wood MCS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128:3138–3139

    Article  CAS  Google Scholar 

  24. Wang RE, Zhang Y, Cai J, Cai W, Gao T (2011) Aptamer-based fluorescent biosensors. Curr Med Chem 18:4175–4184

    Article  CAS  Google Scholar 

  25. Wang Z, Lu Y (2009) Functional DNA directed assembly of nanomaterials for biosensing. J Mater Chem 19:1788–1798

    Article  CAS  Google Scholar 

  26. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476

    Article  CAS  Google Scholar 

  27. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  Google Scholar 

  28. He SJ, Song B, Li D, Zhu CF, Qi WP, Wen YQ, Wang LH, Song SP, Fang HP, Fan CH (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20:453–459

    Article  CAS  Google Scholar 

  29. Jung JH, Cheon DS, Liu F, Lee KB, Seo TS (2010) A graphene oxide based immune-biosensor for pathogen detection. Angew Chem Int Edit 49:5708–5711

    Article  CAS  Google Scholar 

  30. Wen YQ, Xing FF, He SJ, Song SP, Wang LH, Long YT, Li D, Fan CH (2010) A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46:2596–2598

    Article  CAS  Google Scholar 

  31. Zhao XH, Kong RM, Zhang XB, Meng HM, Liu WN, Tan W, Shen GL, Yu RQ (2011) Graphene-DNAzyme based biosensor for amplified fluorescence“turn-on” detection of Pb2+ with a high selectivity. Anal Chem 83:5062–5066

    Article  CAS  Google Scholar 

  32. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nature Nanotech 6:147–150

    Article  CAS  Google Scholar 

  33. Chen JR, Odenthal PM, Swartz A, Floyd GC, Wen H, Luo KY, Kawakami RK (2013) Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett 13:3106–3110

    Article  CAS  Google Scholar 

  34. Yin Z, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80

    Article  CAS  Google Scholar 

  35. Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147

    Article  CAS  Google Scholar 

  36. He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, Zhang H (2012) Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8:2994–2999

    Article  CAS  Google Scholar 

  37. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2‑based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001

    Article  CAS  Google Scholar 

  38. Ge J, Ou EC, Yu RQ, Chu X (2014) A novel aptameric nanobiosensor based on the self-assembled DNA–MoS2 nanosheet architecture for biomolecule detection. J Mater Chem B 2:625–628

    Article  CAS  Google Scholar 

  39. Wang L, Wang Y, Wong JI, Palacios T, Kong J, Yang HY (2014) Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10:1101–1105

    Article  CAS  Google Scholar 

  40. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116

    Article  CAS  Google Scholar 

  41. Choi HK, Lee JH (2013) Role of magnetic Fe3O4 graphene oxide in chemiluminescent aptasensors capable of sensing tumor markers in human serum. Anal Methods 5:6964–6968

    Article  CAS  Google Scholar 

  42. Feng T, Feng D, Shi W, Li X, Ma H (2012) A graphene oxide-peptide fluorescence sensor for proteolytically active prostate-specific antigen. Mol Biosyst 8:1441–1445

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21375076, 21205068, 21275089), the Scientific Research Starting Foundation for Returned Overseas (Ministry of Education of China), and the Project of Shandong Province Higher Educational Science and Technology Program (J12LD17). The authors acknowledge Mr Marvin B Jacobson, B. Arch, from Skillman NJ, USA for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengli Qu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, RM., Ding, L., Wang, Z. et al. A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal Bioanal Chem 407, 369–377 (2015). https://doi.org/10.1007/s00216-014-8267-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8267-9

Keywords

Navigation