Skip to main content
Log in

Determination of nitrotyrosine in Arabidopsis thaliana cell cultures with a mixed-mode solid-phase extraction cleanup followed by liquid chromatography time-of-flight mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a method for the determination of trace nitrotyrosine (NO2Tyr) and tyrosine (Tyr) in Arabidopsis thaliana cell cultures is proposed. Due to the complexity of the resulting extracts after protein precipitation and enzymatic digestion and the strong electrospray signal suppression displayed in the detection of both Tyr and NO2Tyr from raw A. thaliana cell culture extracts, a straightforward sample cleanup step was proposed. It was based on the use of mixed-mode solid-phase extraction (SPE) using MCX-type cartridges (Strata™-X-C), prior to identification and quantitation using fast liquid chromatography–electrospray time-of-flight mass spectrometry. Unambiguous confirmation of both amino acids was accomplished with accurate mass measurements (with errors lower than 2 ppm) of each protonated molecule along with a characteristic fragment ion for each species. Recovery studies were accomplished to evaluate the performance of the SPE sample preparation step obtaining average recoveries in the range 92–101 %. Limit of quantitation obtained for NO2Tyr in A. thaliana extracts was 3 nmol L−1. Finally, the proposed method was applied to evaluate stress conditions of the plant upon different concentrations of peroxynitrite, a protein-nitrating compound, which induces the nitration of Tyr at the nanomolar range. Detection and confirmation of the compounds demonstrated the usefulness of the proposed approach.

Determination of trace nitrotyrosine and tyrosine in Arabidopsis thaliana cell cultures by liquid chromatography time-of-flight mass spectrometry is achieved

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ischiropoulos H (2009) Protein tyrosine nitration—an update. Arch Biochem Biophys 484(2):117–121

    Article  CAS  Google Scholar 

  2. Jung RL, Soo JL, Tae WK, Jae KK, Hyung SP, Kim DE, Kwang PK, Yeo WS (2009) Chemical approach for specific enrichment and mass analysis of nitrated peptides. Anal Chem 81(16):6620–6626

    Article  Google Scholar 

  3. Chiappetta G, Corbo C, Palmese A, Marino G, Amoresano A (2009) Quantitative identification of protein nitration sites. Proteomics 9(6):1524–1537

    Article  CAS  Google Scholar 

  4. Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung C 287(2):L262–L268

    Google Scholar 

  5. Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101(12):4003–4008

    Article  CAS  Google Scholar 

  6. Abello N, Kerstjens HAM, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8(7):3222–3238

    Article  CAS  Google Scholar 

  7. Corpas FJ, Chaki M, Leterrier M, Barroso JB (2009) Protein tyrosine nitration: a new challenge in plants. Plant Signal Behav 4(10):920–923

    Article  CAS  Google Scholar 

  8. Delatour T, Guy PA, Stadler RH, Turesky RJ (2002) 3-Nitrotyrosine butyl ester: a novel derivative to assess tyrosine nitration in rat plasma by liquid chromatography–tandem mass spectrometry detection. Anal Biochem 302(1):10–18

    Article  CAS  Google Scholar 

  9. Souza JM, Peluffo G, Radi R (2008) Protein tyrosine nitration—functional alteration or just a biomarker? Free Radic Biol Med 45(4):357–366

    Article  CAS  Google Scholar 

  10. Kato Y, Dozaki N, Nakamura T, Kitamoto N, Yoshida A, Naito M, Kitamura M, Osawa T (2009) Quantification of modified tyrosines in healthy and diabetic human urine using liquid chromatography/tandem mass spectrometry. J Clin Biochem Nutr 44(1):67–78

    Article  CAS  Google Scholar 

  11. Alvarez B, Radi R (2003) Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25(3–4):295–311

    Article  CAS  Google Scholar 

  12. Corpas FJ, Hayashi M, Mano S, Nishimura M, Barroso JB (2009) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151(4):2083–2094

    Article  CAS  Google Scholar 

  13. Corpas FJ, del Río LA, Barroso JB (2007) Need of biomarkers of nitrosative stress in plants. Trends Plant Sci 12(10):436–438

    Article  CAS  Google Scholar 

  14. Chaki M, Fernández-Ocaña AM, Valderrama R, Carreras A, Esteban FJ, Luque F, Gómez-Rodríguez MV, Begara-Morales JC, Corpas FJ, Barroso JB (2009) Involvement of reactive nitrogen and oxygen species (RNS and ROS) in sunflower–mildew interaction. Plant Cell Physiol 50(2):265–279

    Article  CAS  Google Scholar 

  15. Corpas FJ, Chaki M, Fernández-Ocaña A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, Del Río LA, Barroso JB (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49(11):1711–1722

    Article  CAS  Google Scholar 

  16. Tsikas D (2010) Measurement of nitrotyrosine in plasma by immunoassays is fraught with danger: commercial availability is no guarantee of analytical reliability. Clin Chem Lab Med 48(1):141–143

    Article  CAS  Google Scholar 

  17. Duncan MW (2003) A review of approaches to the analysis of 3-nitrotyrosine. Amino Acids 25(3–4):351–361

    Article  CAS  Google Scholar 

  18. Tsikas D (2012) Analytical methods for 3-nitrotyrosine quantification in biological samples: the unique role of tandem mass spectrometry. Amino Acids 42(1):45–63

    Article  CAS  Google Scholar 

  19. Tsikas D, Caidahl K (2005) Recent methodological advances in the mass spectrometric analysis of free and protein-associated 3-nitrotyrosine in human plasma. J Chromatogr B 814(1):1–9

    Article  CAS  Google Scholar 

  20. Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray-tandem mass spectrometry. Clin Biochem 38(4):328–334

    Article  CAS  Google Scholar 

  21. Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol Biochem 30:123–128

    CAS  Google Scholar 

  22. Jouanneau J-P, Péaud-Lenoël C (1967) Croissance et synthese des proteines de suspensions cellulaires de Tabac sensibles à la kinétine. Physiol Plant 20(4):834–850

    Article  CAS  Google Scholar 

  23. Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, López-Jaramillo J, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. Plant Cell Environ 34(11):1803–1818

    Article  CAS  Google Scholar 

  24. Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, López-Jaramillo J, Luque F, Palma JM, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Gómez-Rodríguez MV, Corpas FJ, Barroso JB (2009) Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J Exp Bot 60(15):4221–4234

    Article  CAS  Google Scholar 

  25. Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18(20):8126–8132

    CAS  Google Scholar 

  26. Abrankó L, García-Reyes JF, Molina-Díaz A (2011) In-source fragmentation and accurate mass analysis of multiclass flavonoid conjugates by electrospray ionization time-of-flight mass spectrometry. J Mass Spectrom 46(5):478–488

    Article  Google Scholar 

  27. Simpson NJK (ed) (2000) Solid-phase extraction: principles, techniques, and applications, vol 1. Marcel Dekker, New York

    Google Scholar 

  28. Ishii Y, Iijima M, Umemura T, Nishikawa A, Iwasaki Y, Ito R, Saito K, Hirose M, Nakazawa H (2006) Determination of nitrotyrosine and tyrosine by high-performance liquid chromatography with tandem mass spectrometry and immunohistochemical analysis in livers of mice administered acetomonophen. J Pharm Biomed Anal 41:1325–1331

    Article  CAS  Google Scholar 

  29. Ytterberg AJ, Jensen ON (2010) Modification-specific proteomics in plant biology. J Proteomics 73(11):2249–2266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support from the Spanish “Ministerio de Asuntos Exteriores y de Cooperación” (Program PCI-AECID Ref. A/026661/09), Junta de Andalucía (Research Groups FQM323, BIO-286, BIO-192), and the Spanish “Ministerio de Ciencia e Innovación” (BIO2009-12003-C02-01 and BIO2009-12003-C02-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Molina-Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berton, P., Domínguez-Romero, J.C., Wuilloud, R.G. et al. Determination of nitrotyrosine in Arabidopsis thaliana cell cultures with a mixed-mode solid-phase extraction cleanup followed by liquid chromatography time-of-flight mass spectrometry. Anal Bioanal Chem 404, 1495–1503 (2012). https://doi.org/10.1007/s00216-012-6220-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6220-3

Keywords

Navigation