Skip to main content

Advertisement

Log in

A selective adenosine sensor derived from a triplex DNA aptamer

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study is to develop a selective adenosine aptamer sensor using a rational approach. Unlike traditional RNA aptamers developed from SELEX, duplex DNA containing an abasic site can function as a general scaffold to rationally design aptamers for small aromatic molecules. We discovered that abasic site-containing triplex DNA can also function as an aptamer and provide better affinity than duplex DNA aptamers. A novel adenosine aptamer sensor was designed using such a triplex. The aptamer is modified with furano-dU in the binding site to sense the binding. The sensor bound adenosine has a dissociation constant of 400 nM, more than tenfold stronger than the adenosine aptamer developed from SELEX. The binding quenched furano-dU fluorescence by 40%. It was also demonstrated in this study that this sensor is selective for adenosine over uridine, cytidine, guanosine, ATP, and AMP. The detection limit of this sensor is about 50 nM. The sensor can be used to quantify adenosine concentrations between 50 nM and 2 μM.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dunwiddie TV, Masino SA (2001) Annu Rev Neurosci 24:31–55

    Article  CAS  Google Scholar 

  2. Jacobsen KA, Gao Z-G (2006) Nat Rev Drug Discov 5:247–264

    Article  Google Scholar 

  3. Gruber HE, Hoffer ME, McAllister DR, Laikind PK, Lane TA, Schmid-Schoenbein GW, Engler RL (1989) Circulation 80:1400–1411

    CAS  Google Scholar 

  4. Conlay LA, Conant JA, deBros F, Wurtman R (1997) Nature 389:136

    Article  CAS  Google Scholar 

  5. Castro-Gago M, Camina F, Lojo S, Ro-driguez-Segade S, Rodriguez-Nunez A (1992) Eur. J Clin Chem Clin Biochem 30:761–176

    CAS  Google Scholar 

  6. Dale NJ (1998) Physiol 511:265–272

    Article  CAS  Google Scholar 

  7. Llaudet E, Botting NP, Crayston JA, Dale N (2003) Biosens Bioelectron 18:43–52

    Article  CAS  Google Scholar 

  8. Xu W, Lu Y (2010) Anal Chem 82:574–578

    Article  CAS  Google Scholar 

  9. Liu J, Lu Y (2006) Angew Chem Int Ed 45:90–94

    Article  CAS  Google Scholar 

  10. Lu N, Shao C, Deng Z (2008) Chem Commun 6161–6163

  11. Xiang Y, Wang Z, Xing H, Wong NY, Lu Y (2010) Anal Chem 82:4122–4129

    Article  CAS  Google Scholar 

  12. Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, Bakos R, Nedergaard M (2008) Nat Med 14:75–80

    Article  CAS  Google Scholar 

  13. Huizenga DE, Szostak JW (1995) Biochemistry 34:656–665

    Article  CAS  Google Scholar 

  14. Wang DY, Lai BH, Sen DJ (2002) Mol Biol 318:33–43

    Article  CAS  Google Scholar 

  15. Coppel Y, Constant J-F, Coulombeau C, Demeunynck M, Garcia J, Lhomme J (1997) Biochemistry 36:4831–4843

    Article  CAS  Google Scholar 

  16. Thomas F, Mi-chon J, Lhomme J (1999) Biochemistry 38:1930–1937

    Article  CAS  Google Scholar 

  17. Sankaran NB, Nishizawa S, Seino T, Yoshimoto K, Teramae N (2006) Angew Chem Int Ed 45:1563–1568

    Article  CAS  Google Scholar 

  18. Ong HC, Arambula JF, Ramisetty SR, Baranger AM, Zimmerman SC (2009) Chem Commun 668–670

  19. Li M, Sato Y, Nishizawa S, Seino T, Nakamura K, Teramae N (2009) J Am Chem Soc 131:2448–2449

    Article  CAS  Google Scholar 

  20. Thiagarajan V, Rajendran A, Satake H, Nishizawa S, Teramae N (2010) Chembiochem 11:94–100

    Article  CAS  Google Scholar 

  21. Srivatsan SG, Tor Y (2007) J Am Chem Soc 129:2044–2053

    Article  CAS  Google Scholar 

  22. Srivatsan SG, Tor Y (2007) Tetrahedron 63:3601–3607

    Article  CAS  Google Scholar 

  23. Greco NJ, Tor Y (2007) Tetrahedron 63:3415–3614

    Article  Google Scholar 

  24. Wang S, Booher MA, Kool ET (1994) Biochemistry 33:4639–4644

    Article  CAS  Google Scholar 

  25. Lee H-T, Khutsishvili I, Marky LA (2010) J Phys Chem B 114:541–548

    Article  CAS  Google Scholar 

  26. Sazani PL, Larralde R, Szostak JW (2004) J Am Chem Soc 126:8370–8371

    Article  CAS  Google Scholar 

  27. Cywinski PJ, Moro AJ, Ritschel T, Hildebrandt N, Lohmannsroben H-G (2011) Anal Bioanal Chem 399:1215–1222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the faculty start-up fund of New Jersey Institute of Technology. We also thank Dr. Robert Donnelly of the University of Medicine and Dentistry of New Jersey for assistance in oligonucleotide synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haidong Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF 687 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, M., Dutta, A. & Huang, H. A selective adenosine sensor derived from a triplex DNA aptamer. Anal Bioanal Chem 400, 3035–3040 (2011). https://doi.org/10.1007/s00216-011-4996-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4996-1

Keywords

Navigation