Skip to main content
Log in

Advances in amino acid analysis

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Amino acids are important targets for metabolic profiling. For decades, amino acid analysis has been accomplished by either cation-exchange or reversed-phase liquid chromatography coupled to UV absorbance or fluorescence detection of pre-column or post-column-derivatized amino acids. Recent years have seen great progress in the development of direct-infusion or hyphenated mass spectrometry in the analysis of free amino acids in physiological fluids, because mass spectrometry not only matches optical detection in sensitivity, but also offers superior selectivity. The advent of cryo-probes has also brought NMR spectroscopy within the detection limits required for the analysis of free amino acids. But there is still room for further improvement, including expansion of the analyte spectrum, reduction of sample preparation and analysis time, automation, and synthesis of affordable isotope standards.

Fully automated gas chromatography-mass spectrometry analysis of amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Qureshi G, Qureshi A (1989) J Chromatogr 491:281–289

    Article  CAS  Google Scholar 

  2. Armstrong M, Jonscher K, Reisdorph NA (2007) Rapid Commun Mass Spectrom 21:2717–2726

    Article  CAS  Google Scholar 

  3. Le Boucher J, Charret C, Coudray-Lucas C, Giboudeau J, Cynober L (1997) Clin Chem 43:1421–1428

    Google Scholar 

  4. Joseph MH, Davies P (1983) J Chromatogr 277:125–136

    Article  CAS  Google Scholar 

  5. Fekkes D (1996) J Chromatogr B 682:3–22

    Article  CAS  Google Scholar 

  6. Pappa-Louisi A, Nikitas P, Agrafiotou P, Papageorgiou A (2007) Anal Chim Acta 593:92–97

    Article  CAS  Google Scholar 

  7. Boogers I, Plugge W, Stokkermans YQ, Duchateau AL (2008) J Chromatogr A 1189:406–409

    Article  CAS  Google Scholar 

  8. Piraud M, Vianey-Saban C, Bourdin C, Acquaviva-Bourdain C, Boyer S, Elfakir C, Bouchu D (2005) Rapid Commun Mass Spectrom 19:3287–3297

    Article  CAS  Google Scholar 

  9. de Person M, Chaimbault P, Elfakir C (2008) J Mass Spectrom 43:204–215

    Article  Google Scholar 

  10. Langrock T, Czihal P, Hoffmann R (2006) Amino Acids 30:291–297

    Article  CAS  Google Scholar 

  11. Fukushima T, Usui N, Santa T, Imai K (2003) J Pharm Biomed Anal 30:1655–1687

    Article  CAS  Google Scholar 

  12. Nouadje G, Rubie H, Chatelut E, Canal P, Nertz M, Puig P, Couderc F (1995) J Chromatogr A 717:293–298

    Article  CAS  Google Scholar 

  13. Poinsot V, Rodat A, Gavard P, Feurer B, Couderc F (2008) Electrophoresis 29:207–223

    Article  CAS  Google Scholar 

  14. Soga T, Kakazu Y, Robert M, Tomita M, Nishioka T (2004) Electrophoresis 25:1964–1972

    Article  CAS  Google Scholar 

  15. Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM (2005) J Exp Bot 56:219–243

    Article  CAS  Google Scholar 

  16. Zumwalt RW, Roach D, Gehrke CW (1970) J Chromatogr 53:171–194

    Article  CAS  Google Scholar 

  17. Wells RJ (1999) J Chromatogr A 843:1–18

    Article  CAS  Google Scholar 

  18. Husek P (1998) J Chromatogr B 717:57–91

    Article  CAS  Google Scholar 

  19. Villas-Boas SG, Delicado DG, Akesson M, Nielsen J (2003) Anal Biochem 322:134–138

    Article  CAS  Google Scholar 

  20. Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2008) J Chromatogr B 870:222–232

    Article  CAS  Google Scholar 

  21. Zampolli MG, Basaglia G, Dondi F, Sternberg R, Szopa C, Pietrogrande MC (2007) J Chromatogr A 1150:162–172

    Article  CAS  Google Scholar 

  22. Husek P, Simek P, Hartvich P, Zahradnickova H (2008) J Chromatogr A 1186:391–400

    Article  CAS  Google Scholar 

  23. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Mol Cell Proteomics 3:1154–1169

    Article  CAS  Google Scholar 

  24. Chace DH, Kalas TA, Naylor EW (2002) Annu Rev Genomics Hum Genet 3:17–45

    Article  CAS  Google Scholar 

  25. Dunn WB, Bailey NJ, Johnson HE (2005) Analyst 130:606–625

    Article  CAS  Google Scholar 

  26. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Anal Chem 78:4430–4442

    Article  CAS  Google Scholar 

  27. Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, Saude EJ, Lix B, Adamko DJ, Shah S, Greiner R, Sykes BD, Marrie TJ (2007) Anal Chem 79:6995–7004

    Article  CAS  Google Scholar 

  28. Shanaiah N, Desilva MA, Nagana Gowda GA, Raftery MA, Hainline BE, Raftery D (2007) Proc Natl Acad Sci USA 104:11540–11544

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by BayGene, the FUGATO-plus-MeGA-M (FKZ: 0315131F), and the intramural REFORM program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Oefner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaspar, H., Dettmer, K., Gronwald, W. et al. Advances in amino acid analysis. Anal Bioanal Chem 393, 445–452 (2009). https://doi.org/10.1007/s00216-008-2421-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2421-1

Keywords

Navigation