Skip to main content
Log in

Novel coumarin-based fluorescent pH indicators, probes and membranes covering a broad pH range

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new family of coumarin-based pH indicators was synthesized. They are sensitive to pH in either weakly acidic or weakly basic solution. The indicators possess moderate to high brightness, excellent photostability and compatibility with light-emitting diodes. The indicators were covalently immobilized on the surface of amino-modified polymer microbeads which in turn were incorporated into a hydrogel matrix to obtain novel pH-sensitive materials. When a mixture of two different microbeads is used, the membranes are capable of optical pH sensing over a very wide range comparable to the dynamic range of the glass electrode (pH 1–11).

A new family of coumarin-based pH indicators is synthesized for the use in either weakly acidic or weakly basic solution. The indicators possess moderate to high brightness, excellent photostability and compatibility with light-emitting diodes. Novel pH-sensitive materials are obtained by covalent immobilization of the indicators on the surface of amino-modified polymer microbeads which in turn are incorporated into a hydrogel matrix. Sensing of pH over a very wide range also becomes possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schroeder C, Weidgans BM, Klimant I (2005) Analyst 130(6):907–916

    Article  CAS  Google Scholar 

  2. Neurauter G, Klimant I, Wolfbeis OS (2000) Fresenius’ J Anal Chem 366:481–487

    Article  CAS  Google Scholar 

  3. Mekhail K, Khacho M, Gunaratnam L, Lee S (2004) Cell Cycle 3:1027–1029

    CAS  Google Scholar 

  4. Kojima S, Suzuki H (2003) Chem Sens 19:25–27

    CAS  Google Scholar 

  5. Juarez Tomas MS, Wiese B, Nader-Macýas ME (2005) J Appl Microbiol 99:1383–1391

    Article  CAS  Google Scholar 

  6. Drosinos EH, Mataragas M, Nasis P, Galiotou M, Metaxopoulos J (2005) J Appl Microbiol 99:1314–1323

    Article  CAS  Google Scholar 

  7. Marshall AJ, Blyth J, Davidson CAB, Lowe CR (2003) Anal Chem 75:4423–4431

    Article  CAS  Google Scholar 

  8. Simova E, Simov Z, Beshkova D, Frengova G, Dimitrov Z, Spasov Z (2006) Int J Food Microbiol 107:112–123

    Article  CAS  Google Scholar 

  9. Diwu Z, Chen CS, Zhang C, Klaubert DH, Haugland RP (1999) Chem Biol 6:411–418

    Article  CAS  Google Scholar 

  10. Hara-Chikuma M, Wang Y, Guggino SE, Guggino WB, Verkman AS (2005) Biochem Biophys Research Commun 329:941–946

    Article  CAS  Google Scholar 

  11. Simek M, Jisova L, Hopkins DW (2002) Soil Biol Biochem 34:1227–1234

    Article  CAS  Google Scholar 

  12. Muhrizal S, Shamshuddin J, Fauziah I, Husni MAH (2006) Geoderma 131:110–122

    Article  CAS  Google Scholar 

  13. Topaloglu U, Muftuoglu T, Akturk Z, Ekinci1 H, Peker O, Unalmiser S (2004) Surg Today 34:690–694

    Article  CAS  Google Scholar 

  14. Wiczling P, Markuszewski MJ, Kaliszan M, Galer K, Kaliszan R (2005) J Pharm Biomed Anal 37:871–875

    Article  CAS  Google Scholar 

  15. Wolfbeis OS (2006) Anal Chem 78:3859–3874, and references therein

    Article  CAS  Google Scholar 

  16. Cajlakovic M, Lobnik A, Werner T (2002) Anal Chim Acta 455:207–213

    Article  CAS  Google Scholar 

  17. Niu CG, Gui XQ, Zeng GM, Guan AL, Gao PF, Qin PZ (2005) Anal Bioanal Chem 383:349–357

    Article  CAS  Google Scholar 

  18. Bernhard DD, Mall S, Pantano P (2001) Anal Chem 73:2484–2490

    Article  CAS  Google Scholar 

  19. Leiner MJP, Wolfbeis OS (eds) (1991) Fiber optic chemical sensors and biosensors. CRC, Boca Raton, p 63

    Google Scholar 

  20. Leiner MJP, Hartmann P (1993) Sens Actuators B 11:281–289

    Article  Google Scholar 

  21. Niu C-G, Gui X-Q, Zeng G-M, Yuan X-Z (2005) Analyst 130:1551–1556

    Article  CAS  Google Scholar 

  22. Miliani C, Romani A, Favaro G (2000) J Phys Org Chem 13:141–150

    Article  CAS  Google Scholar 

  23. Lin J, Liu D (2000) Anal Chim Acta 408:49–55

    Article  CAS  Google Scholar 

  24. Netto EJ, Peterson GJ, McShane M, Hampshire V (1995) Sens Actuators B 29:157–163

    Article  Google Scholar 

  25. Suah FBM, Ahmad M, Taib MN (2003) Sens Actuators B 90:175–181

    Article  Google Scholar 

  26. Lobnik A, Majcena N, Niederreiterb K, Uray G (2001) Sens Actuators B 74:200–206

    Article  Google Scholar 

  27. Nishimura G, Shiraishi Y, Hirai Y (2005) Chem Commun 5313–5315

  28. Sartoris FJ, Bock C, Serendero I, Lannig G, Poertner HO (2003) J Fish Biol 62:1239–1253

    Article  CAS  Google Scholar 

  29. Arain S, John GT, Krause C, Gerlach J, Wolfbeis OS, Klimant I (2006) Sens Actuators B 113:639–648

    Article  Google Scholar 

  30. Smith JP, Drewes LR (2006) J Biol Chem 281:2053–2060

    Article  CAS  Google Scholar 

  31. An Z, Moehwald H, Li J (2006) Biomacromolecules 7:580–585

    Article  CAS  Google Scholar 

  32. Herrmann JM, Kantarci A, Long H, Bernardo J, Hasturk H, Wray LV, Simons ER, Van Dyke TE (2005) J Leukocyte Biol 78:612–619

    Article  CAS  Google Scholar 

  33. Vasylevska GS, Borisov SM, Krause C, Wolfbeis OS (2006) Chem Mater 18:4609–4616

    Article  CAS  Google Scholar 

  34. Mordon S, Devoisselle M, Soulie J (1995) J Photochem Photobiol B 1:19–23

    Article  Google Scholar 

  35. Leiner MJP (1995) Sens Actuators B 1–3:169–173

    Article  Google Scholar 

  36. Bellerby RGJ, Olsen A, Johannessen T, Croot P (2002) Talanta 1:61–69

    Article  Google Scholar 

  37. Martz TR, Carr JJ, French CR, DeGrandpre MD (2003) Anal Chem 8:1844–1850

    Article  Google Scholar 

  38. Whitaker JE, Haugland RP, Prendergast FG (1991) Anal Biochem 2:330–344

    Article  Google Scholar 

  39. Parker JW, Laksin O, Yu C, Lau ML, Klima S, Fisher R, Scott I, Atwater BW (1993) Anal Chem 17:2329–2334

    Google Scholar 

  40. Karasev AA, Lukatskaya LL, Rubtsov MI, Zhykol EK, Yarmolenko SN, Ponomarev OA (1995) Russ J Gen Chem 65:1416–1425

    Google Scholar 

  41. Rajagopal R, Shenoy VU, Padmanabhan S, Sequeira S, Seshadri S (1990) Dyes Pigm 13:167–175

    Article  CAS  Google Scholar 

  42. Swindlehurst BR, Narayanaswamy R (eds) (2004) Optical sensing of pH in low ionic strength waters. Optical Sensors, Manchester, pp 281–308

    Google Scholar 

  43. Hermanson GT (1996) Bioconjugate techniques. Academic, New York

    Google Scholar 

  44. Huber C, Werner T, Krause C, Leiner MJP, Wolfbeis OS (1999) Anal Chim Acta 398:137–143

    Article  CAS  Google Scholar 

  45. Demas JN, Crosby GA (1971) J Phys Chem 76:991–1024

    Google Scholar 

  46. Krause C, Werner T, Huber C, Wolfbeis OS, Leiner MJP (1999) Anal Chem 71:1544–1548

    Article  CAS  Google Scholar 

  47. Perrin DD, Dempsey B (1974) Laboratory manuals. Chapmann & Hall, London

    Google Scholar 

  48. Syzova ZA, Doroshenko AO, Lukatskaya LL, Rubtsov MI, Karasyov AA (2004) J Photochem Photobiol A 165:59–68

    Article  CAS  Google Scholar 

  49. Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R (2003) Anal Chem 75:3784–3791

    Article  CAS  Google Scholar 

  50. Park EJ, Reid KR, Tang W, Kennedy RT, Kopelman R (2005) J Mater Chem 15:2913–2919

    Article  CAS  Google Scholar 

  51. Klimant I, Huber C, Liebsch G, Neurauter G, Stangelmayer A, Wolfbeis OS (eds) (2001) Dual lifetime referencing (DLR)—a new scheme for converting fluorescence intensity into a frequency-domain or time-domain information. Springer, Berlin

    Google Scholar 

  52. Lakowicz JR, Castellano FN, Dattelbaum JD, Tolosa L, Rao G, Gryczynski I (1998) Anal Chem 70:5115–5121

    Article  CAS  Google Scholar 

  53. von Bueltzingsloewen C, McEvoy AK, McDonagh C, MacCraith BD, Klimant I, Krause C, Wolfbeis OS (2002) Analyst 127:1478–1483

    Article  Google Scholar 

  54. Peppas NA (1986) Preparation, methods & structures of hydrogels. CRC, Boca Raton

    Google Scholar 

  55. Drummen GPC, van Liebergen LCM, Op den Kamp JAF, Post JA (2002) Free Radical Biol Med 33:473–490

    Article  CAS  Google Scholar 

  56. Weidgans BM, Krause C, Klimant I, Wolfbeis OS (2004) Analyst 129:645–650

    Article  CAS  Google Scholar 

  57. Shortreed M, Kopelman R, Kuhn M, Hoyland B (1996) Anal Chem 68:1414–1418

    Article  CAS  Google Scholar 

  58. Tan W, Shi ZY, Kopelman R (1992) Anal Chem 64:2985–2990

    Article  CAS  Google Scholar 

  59. Kostov Y, Tzonkov S, Yotovan L, Krysteva M (1993) Anal Chem Acta 280:15–19

    Article  CAS  Google Scholar 

  60. Jones TP, Porter MD (1988) Anal Chem 60:404–406

    Article  CAS  Google Scholar 

  61. Opitz N, Luebbers DW (1983) Sens Actuators B 4:473–479

    Article  CAS  Google Scholar 

  62. Niu C-G, Gui X-Q, Zeng G-M, Guan A-L, Gao P-F, Qin P-Z (2005) Anal Bioanal Chem 383:349–357

    Article  CAS  Google Scholar 

  63. Sanchez-Barragan I, Costa-Fernandez JM, Sanz-Medel A (2005) Sens Actuators B 107:69–76

    Article  Google Scholar 

  64. Liebsch G, Klimant I, Krause C, Wolfbeis O S (2001) Anal Chem 73:4354–4363

    Article  CAS  Google Scholar 

  65. Brandrup J, Immergut EH, Grulke EA (eds) (1999) Polymer handbook. Wiley, New York

    Google Scholar 

  66. Liebsch G, Klimant I, Wolfbeis OS (1999) Adv Mater 11:1296–1299

    Article  CAS  Google Scholar 

  67. Borisov SM, Vasylevska AS, Krause C, Wolfbeis OS (2006) Adv Funct Mater 16:1536–1542

    Article  CAS  Google Scholar 

  68. Borisov SM, Krause C, Arain S, Wolfbeis OS (2006) Adv Mater 18:1511–1516

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank the BMBF for financial support within the project BP28 (HYBOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna S. Vasylevska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasylevska, A.S., Karasyov, A.A., Borisov, S.M. et al. Novel coumarin-based fluorescent pH indicators, probes and membranes covering a broad pH range. Anal Bioanal Chem 387, 2131–2141 (2007). https://doi.org/10.1007/s00216-006-1061-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1061-6

Keywords

Navigation