Skip to main content

Advertisement

Log in

Automatic routing of Goldstone diagrams using genetic algorithms

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This paper presents an algorithm for an automatic transformation (= routing) of time-ordered topologies of Goldstone diagrams (i.e., Wick contractions) into graphical representations of these topologies. Since there is no hard criterion for an optimal routing, the proposed algorithm minimizes an empirically chosen cost function over a set of parameters. Some of the latter are naturally of discrete type (e.g., interchange of particle/hole lines due to antisymmetry) while others (e.g., xy-position of nodes) are naturally continuous. In order to arrive at a manageable optimization problem, the position space is artificially discretized. In terms of the (1) cost function, (2) the discrete vertex placement, (3) the interchange of particle/hole lines the routing problem is now well defined and fully discrete. However, it shows an exponential complexity with the number of vertices suggesting to apply a genetic algorithm for its solution. The presented algorithm is capable of routing non-trivial (several loops and crossings) Goldstone diagrams from given topologies. The resulting diagrams are qualitatively fully equivalent to manually routed ones. The proposed algorithm is successfully applied to several coupled cluster approaches and a perturbative (fixpoint iterative) CCSD expansion with repeated diagram substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Coester F (1958) Nucl Phys 7:421

    Article  Google Scholar 

  2. Coester F, Kümmel H (1958) Nucl Phys 9:225

    Article  CAS  Google Scholar 

  3. Čížek J (1966) J Chem Phys 45:4256

    Article  Google Scholar 

  4. Paldus J, Čížek J (1975) Adv Quantum Chem 9:105

    Article  CAS  Google Scholar 

  5. Paldus J (1977) J Chem Phys 67:303

    Article  CAS  Google Scholar 

  6. Goldstone J (1957) Proc R Soc Lond Ser A 239:267

    Article  CAS  Google Scholar 

  7. Hugenholtz NM (1957) Physica 23:533

    Article  CAS  Google Scholar 

  8. Feynman RP (1949) Phys Rev 76(6):769

    Article  Google Scholar 

  9. Paldus J, Wong HC (1973) Comput Phys Commun 6:1

    Article  Google Scholar 

  10. Csepes Z, Pipek J (1988) J Comput Phys 77:1

    Article  CAS  Google Scholar 

  11. Lyons J, Moncrieff D, Wilson S (1994) Comput Phys Commun 84:91

    Article  CAS  Google Scholar 

  12. Derevianko A, Emmons ED (2002) Phys Rev A 66:012503

    Article  Google Scholar 

  13. Mathar RJ (2007) Int J Quantum Chem 107:1975

    Article  CAS  Google Scholar 

  14. Wick GC (1950) Phys Rev 80:268

    Article  Google Scholar 

  15. Kállay M, Surján PR (2001) J Chem Phys 115:2945

    Article  Google Scholar 

  16. Harris FE (1999) Int J Quantum Chem 75:593

    Article  CAS  Google Scholar 

  17. Dzuba VA (2009) Comput Phys Commun 180:392

    Article  CAS  Google Scholar 

  18. Hanrath M (2007) Equivalence class decomposition of contraction patterns in Wick’s theorem exploiting tensor anti-symmetry: application to three-body terms (unpublished results)

  19. Hanrath M (2008) A general and efficient diagrammatic term simplification engine: evaluation of the wave function variance (unpublished results)

  20. Hanrath M (2019) Diag2PS—a text driven diagram assembling tool based on PSTricks. www.tc.uni-koeln.de/people/hanrath/Interactive/Diag2PS. Accessed 11 Sept 2019

  21. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics—MBPT and coupled-cluster theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Harris FE, Monkhorst HJ, Freeman DL (1992) Algebraic and diagrammatic methods in many-Fermion theory. Oxford University Press Inc, Oxford

    Google Scholar 

  23. Crawford TD, Schaefer HF III (2000) Rev Comput Chem 14:33

    CAS  Google Scholar 

  24. Baker H (1902) Proc Lond Math Soc 34(1):347

    Article  Google Scholar 

  25. Campbell J (1897) Proc Lond Math Soc 28:381

    Google Scholar 

  26. Hausdorff F (1906) Berl Verh Sächs Akad Wiss Leipz 58:19

    Google Scholar 

  27. Holland JH (1975) Adaption in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  28. Kumar M, Husian M, Upreti N, Gupta D (2010) Int J Inf Technol Knowl Manag 2(2):451

    Google Scholar 

  29. Engels-Putzka A, Hanrath M (2011) J Chem Phys 134:124106

    Article  Google Scholar 

  30. Hanrath M, Engels-Putzka A (2010) J Chem Phys 133:064108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Herrmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, N., Hanrath, M. Automatic routing of Goldstone diagrams using genetic algorithms. Theor Chem Acc 138, 117 (2019). https://doi.org/10.1007/s00214-019-2505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2505-3

Keywords

Navigation