Skip to main content
Log in

DFT study of two-photon absorption of octupolar molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The two-photon absorption (TPA) properties of octupolar molecules based on a triphenyl-isocyanurate cyclotrimer, a 1,3,5-triphenyl-benzene or a triphenyl-triazine core were theoretically investigated using DFT and TD-DFT computations. These compounds are very promising regarding their potential application, especially for optical limitation. These systems, which exhibit a threefold axis, contain three arms with a terminal electron-donating group linked in 1, 3 and 5 positions to the central C3N3O3 isocyanurate, benzene or triazine ring. The SAOP functional and a DZP basis set were selected for the TPA computations. The so-computed TPA energies and cross sections are in good agreement with the observed data. Increasing the strength of the donor terminal group enhances the TPA cross section values. The compound with triazine core presents the highest two-photon cross section value compared to the values found for the isocyanurate or the 1,3,5-phenyl core as central ring. Furthermore, this study brings to light a cooperative enhancement of the TPA property between the three arms attached to the isocyanurate ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Göppert-Mayer M (1931) Ann Phys (Leipzig) 9:273–294

    Article  Google Scholar 

  2. Kaiser W, Garret CGB (1961) Phys Rev Lett 7:229–231

    Article  CAS  Google Scholar 

  3. He GS, Tan L-S, Zheng Q, Prasad PN (2008) Chem Rev 108:1245–1330

    Article  CAS  Google Scholar 

  4. Kim H M, Cho B R (2009) Chem Commun pp 153–164

  5. Parthenopoulos DA, Rentzepis PM (1989) Science 245:843–845

    Article  CAS  Google Scholar 

  6. Belfield KD, Ren X, Van Stryland EW, Hagan DJ, Dubikovski V, Meisak EJ (2000) J Am Chem Soc 122:1217–1219

    Article  CAS  Google Scholar 

  7. Denk W, Strickler JH, Webb WW (1990) Science 248:73–76

    Article  CAS  Google Scholar 

  8. Kohler RH, Cao J, Zipfel WR, Webb WW, Hansen MR (1997) Science 276:2039–2042

    Article  CAS  Google Scholar 

  9. Bhawalkar JD, He GS, Prasad PN (1996) Rep Prog Phys 59:1041–1070

    Article  CAS  Google Scholar 

  10. Spangler CW (1999) J Mater Chem 9:2013–2020

    Article  CAS  Google Scholar 

  11. Dini D, Calvete MJF, Hanack M (2016) Chem Rev 116:13043–13233

    Article  CAS  Google Scholar 

  12. Zhongwei H, Autschbach J, Jensen L (2016) J Chem Theory Comput 12:1294–1304

    Article  Google Scholar 

  13. Beerepoot MTP, Friese DH, List NH, Kongstedb J, Ruuda K (2015) Phys Chem Chem Phys 17:19306–19314

    Article  CAS  Google Scholar 

  14. Beerepoot MTP, Alam MM, Bednarska J, Bartkowiak W, Ruud K, Zaleśny R (2018) J Chem Theory Comput 14:3677–3685

    Article  CAS  Google Scholar 

  15. Nayyar IH, Masunov AE, Tretiak S (2013) J Phys Chem 117:18170–18189

    CAS  Google Scholar 

  16. Alam MM, Daniel C (2016) Theor Chem Acc 135:41

    Article  Google Scholar 

  17. Liu X-T, Zou L-Y, Ren A-M, Guo J-F, Sun Y, Huang S, Feng J-K (2011) Theor Chem Acc 130:37–50

    Article  CAS  Google Scholar 

  18. Nguyen KA, Day PN, Pachter R (2008) Theor Chem Acc 120:167–175

    Article  CAS  Google Scholar 

  19. Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M (2008) Adv Mater 20:4641–4678

    Article  CAS  Google Scholar 

  20. Abe M, Chitose Y, Jakkampudi S, Thuy PTT, Lin Q, Van BT, Yamada A, Oyama R, Sasaki M, Ktan C (2017) Synthesis 49:3337–3346

    Article  CAS  Google Scholar 

  21. Sengul O, Boydas EB, Pastore M, Sharmouk W, Gros PC, Catak S, Monari A (2017) Theor Chem Acc 136:67

    Article  Google Scholar 

  22. Yan L-K, Pomogaeva A, Gu F-L, Aoki Y (2010) Theor Chem Acc 125:511–520

    Article  CAS  Google Scholar 

  23. Zhao Y, Guo J-F, Ren A-M, Feng J-K (2011) Theor Chem Acc 128:265–274

    Article  CAS  Google Scholar 

  24. Argouarch G, Veillard R, Roisnel T, Amar A, Boucekkine A, Singh A, Ledoux I, Paul F (2011) New J Chem 35:2409–2411

    Article  CAS  Google Scholar 

  25. Argouarch G, Veillard R, Roisnel T, Amar A, Meghezzi H, Boucekkine A, Hugues V, Mongin O, Blanchard-Desce M, Paul F (2012) Chem Eur J 18:11811–11827

    Article  CAS  Google Scholar 

  26. Streatfield SL, Pradels C, Ndimba AN, Richy N, Amar A, Boucekkine A, Cifuentes MP, Humphrey MG, Mongin O, Paul F (2017) Chem Select 2:8080–8085

    CAS  Google Scholar 

  27. Triadon A, Ndimba AN, Richy N, Amar A, Boucekkine A, Roisnel T, Cifuentes MP, Humphrey MG, Blanchard-Desce M, Mongin O, Paul F (2018) New J Chem 42:11289–11293

    Article  CAS  Google Scholar 

  28. Pokladek Z, Dudek M, Mongin O, Métivier R, Mlynarz P, Samoc M, Matczyszyn K, Paul F (2017) Chem Plus Chem 82:1372–1383

    CAS  Google Scholar 

  29. ADF Amsterdam Density Functional (2018) Scientific Computing & Modelling: Amsterdam. http://www.scm.com

  30. Schipper PRT, Gritsenko OV, van Gisbergen SJA, Baerends EJJ (2000) Chem Phys 112:1344–1352

    CAS  Google Scholar 

  31. Jensen L, van Duijnen PT, Snijders JGJ (2003) Chem Phys 119:12998–13006

    CAS  Google Scholar 

  32. Adamo C, Barone V (1998) J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09. Revision D.01 Edition. Gaussian Inc., Wallingford, CT

    Google Scholar 

  34. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  35. Jensen L, Autschbach J, Schatz GC (2005) J Chem Phys 122:224

    Google Scholar 

  36. Hu Z, Autschbach J, Jensen L (2014) J Chem Phys 141:124305

    Article  Google Scholar 

  37. Silverstein DW, Jensen L (2012) J Chem Phys 136:064111

    Article  Google Scholar 

  38. Alam MdM, Bolze F, Daniel C, Flamigni L, Gourlaouen C, Heitz V, Jenni S, Schmitt J, Sour A, Ventura B (2016) Phys Chem Chem Phys 18:21954–21965

    Article  CAS  Google Scholar 

  39. Cui Y-Z, Fang Q, Xue G, Xu G-B, Yin L, Yuy W-T (2005) Chem Lett 34:644–645

    Article  CAS  Google Scholar 

  40. Beljonne D, Wenseleers W, Zojer E, Shai Z, Vogel H, Pond SJK, Perry JW, Marder SR, Brédas JL (2002) Adv Funct Mater 12:631–641

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Lasse Jensen for his help regarding TPA calculations using the AORESPONSE module of ADF2017. The financial support of ANR (Isogate Project) is acknowledged as well as GENCI-IDRIS and GENCI-CINES for an allocation of computing time (Grant No. 2017-2018-080649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdou Boucekkine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amar, A., Boucekkine, A., Paul, F. et al. DFT study of two-photon absorption of octupolar molecules. Theor Chem Acc 138, 105 (2019). https://doi.org/10.1007/s00214-019-2494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2494-2

Keywords

Navigation