Skip to main content
Log in

Insights into the bonding between tributylphosphine chalcogenides and zinc(II)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a first-principles systematic study on the bonding and structure of the complexes between zinc(II) chloride and tributylphosphine chalcogenides, n-Bu3PE (E = O, S, Se). These investigations are carried out within the framework of the density functional theory with and without considering the dispersion corrections evaluated at the GD3 level. Inspection of the calculated binding energies, orbitals, charge transfers and natural bond orbital analysis shows the importance of the interplay between σ- and π-type bonding within P–E and E–Zn in the formation of these complexes. Calculations reveal that the P–E–Zn angle goes from 120° to 90° when going from O to Se. In the complexes, the P–E bonds resemble those in the isolated PE diatomic anions, where an electron density excess is found on the chalcogen E whatever its nature. A bonding model for this type of organometallic complexes is proposed and discussed here for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mikulski CM, Skryantz JS, Karayannis NM, Pytlewski LL, Gelfand LS (1978) Inorg Chim Acta 27:69–73

    Article  CAS  Google Scholar 

  2. Karayannis NM, Mikulski CM, Pytlewski LL (1971) Inorg Chim Acta Rev 5:69

    Article  CAS  Google Scholar 

  3. Cotton FA, Bannister E (1960) J Chem Soc 1873–1877

  4. Goodgame DML, Cotton FA (1961) J Chem Soc 2298:3735

    Article  Google Scholar 

  5. Brodie AM, Hunter SH, Rodley GA, Wilkins CJ (1968) J Inorg Chim Acta 2:195

    Article  CAS  Google Scholar 

  6. Karayannis NM, Mikulski CM, Pyrlewski LL (1977) J Inorg Chim Acta Rev 5:69

    Article  Google Scholar 

  7. Qu L, Peng Z, Peng X (2001) Nano Lett 1:333–337

    Article  CAS  Google Scholar 

  8. Jasieniak J, Bullen C, Van EJ, Mulvaney P (2005) J Phys Chem B 109:20665–20668

    Article  CAS  PubMed  Google Scholar 

  9. Burford N, Royan BW, Spence REvH, Cameron TS, Linden A, Rogers RD (1990) J Chem Soc Dalton Trans 1521 and refs therein

  10. Burford N, Royan BW, Spence REvH, Rogers RD (1990) J Chem Soc Dalton Trans 2111–2117

  11. Bania K, Barooah N, Baruah JB (2007) Polyhedron 26:2612–2620

    Article  CAS  Google Scholar 

  12. Afzall M, Crouch D, Malik MA, Motevalli M, O’Brien P, Park J-H, Woollins JD (2004) Eur J Inorg Chem 171–177

  13. Waters J, Crouch DJ, Raftery J, O’Brien P (2004) Chem Mater 16:3289

    Article  CAS  Google Scholar 

  14. Chivers T, Ritch JS, Robertson SD, Konu J, Tuononen HM (2010) Acc Chem Res 43:1053

    Article  CAS  PubMed  Google Scholar 

  15. Laury ML, Carlson MJ, Wilson AK (2012) J Comput Chem 33:2380–2387

    Article  CAS  PubMed  Google Scholar 

  16. Hilliard CR, Bhuvanesh N, Gladysz JA, Blumel Janet (2012) Dalton Trans 41:1742

    Article  CAS  PubMed  Google Scholar 

  17. Grim SO, Walton ED, Satek LC (1980) Can J Chem 58:1476

    Article  CAS  Google Scholar 

  18. Zhao Y, Truhlar DG (2005) Phys Chem Chem Phys 7:2701–2705

    Article  CAS  PubMed  Google Scholar 

  19. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  20. Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982–9985

    Article  CAS  Google Scholar 

  21. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5036

    Article  CAS  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789

    Article  Google Scholar 

  25. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  CAS  PubMed  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09W Revision A. 02, Gaussian, Inc., Wallingford, CT

  27. Gouid Z, Sanhoury MAK, Ben Said R, Carpenter-Warren CL, Slawin AMZ, Ben Dhia MT, Derek Woollins J, Boughdiri S (2017) J Coord Chem 70:3859–3870

    Article  CAS  Google Scholar 

  28. Piquemal JP, Marquez A, Parisel O, Giessner-Prettre C (2005) J Comput Chem 26:1052

    Article  CAS  PubMed  Google Scholar 

  29. Boussouf K, Boulmene R, Prakash M, Komiha N, Taleb M, Mogren Al-Mogren M, Hochlaf M (2015) Phys Chem Chem Phys 17:14417

    Article  CAS  PubMed  Google Scholar 

  30. Dahmani R, Ben Yaghlane S, Boughdiri S, Mogren Al-Mogren M, Prakash M, Hochlaf M (2018) Spectrochim Acta A Mol Biomol Spectrosc 193:375–384

    Article  CAS  PubMed  Google Scholar 

  31. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  CAS  Google Scholar 

  32. Boussouf K, Khairat T, Prakash M, Komiha N, Chambaud G, Hochlaf M (2015) J Phys Chem A 119:11928–11940

    Article  CAS  PubMed  Google Scholar 

  33. Boulmene R, Boussouf K, Prakash M, Komiha N, Al-Mogren MM, Hochlaf M (2016) ChemPhysChem 17:994

    Article  CAS  PubMed  Google Scholar 

  34. Weinhold F, Carpenter JE (1988) In: Naaman R, Vager Z (eds) The structure of small molecules and ions. Plenum, New York, pp 227–236

    Chapter  Google Scholar 

  35. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  36. Császár AG, Czakó G, Furtenbacher T, Tennyson J, Szalay V, Shirin SV, Zobov NF, Polyansky OL (2005) J Chem Phys 122:214305

    Article  CAS  PubMed  Google Scholar 

  37. Chang JH, Huzayyin A, Lianc K, Dawson F (2015) Phys Chem Chem Phys 17:588

    Article  CAS  PubMed  Google Scholar 

  38. Oka T, Morino Y (1962) J Mol Spectrosc 8:300–314

    Article  CAS  Google Scholar 

  39. Kalcher J (2002) Phys Chem Chem Phys 4:3311–3317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Tunisian Ministry of High Education and Scientific Research for financial support (LR99ES14) of this research. M. P. thanks the Department of Science and Technology-Science and Engineering Research Board (DST-SERB) of India for the financial support for early career research award (Grant number: ECR/2017/000891).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Linguerri.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouid, Z., Said, R.B., Sanhoury, M.A. et al. Insights into the bonding between tributylphosphine chalcogenides and zinc(II). Theor Chem Acc 137, 68 (2018). https://doi.org/10.1007/s00214-018-2245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2245-9

Keywords

Navigation