Skip to main content
Log in

Ground-state energy for confined H2: a variational approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Ground-state energies for confined H2 molecule are computed using the variational method. The approach proposed here uses a molecular wave function of the valence bond type, written as the sum of the covalent term and the ionic term. The molecule is confined in an impenetrable prolate spheroidal box. The atomic orbitals are built from a previous suggestion inspired by the factorization of the Schrödinger equation. The aim of this work is to propose a new wave function to be used for the confined hydrogen molecule. The polarizability and quadrupole moment are also calculated. The results obtained are in agreement with other results present in the literature, and they lead to a discussion about the relevance of the ionic term in the wave function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sabin JR, Brandas EJ (2009) Advances in quantum chemistry: theory of confined quantum systems-part one, vol 57. Academic Press, New York

    Google Scholar 

  2. Sabin JR, Brandas EJ (2009) Advances in quantum chemistry: theory of confined quantum systems-part two, vol 58. Academic Press, New York

    Google Scholar 

  3. Saha B, Mukherjee T, Mukherjee P et al (2002) Theor Chem Acc 108:305–310

    Article  CAS  Google Scholar 

  4. Montgomery HE, Pupyshev VI (2015) Theor Chem Acc 134:1598

    Article  CAS  Google Scholar 

  5. Mateos-Cortés S, Ley-Koo E, Cruz SA (2002) Int J Quantum Chem 86:376–389

    Article  CAS  Google Scholar 

  6. LeSar R, Herschbach DR (1983) J Chem Phys 87:5202–5206

    Article  CAS  Google Scholar 

  7. Connerade JP, Dolmatov VK, Lakshmi PA (2000) J Phys B At Mol Opt Phys 33:251–264

    Article  CAS  Google Scholar 

  8. Lv H, Yao M, Li Q, Liu R, Liu B, Yao Z, Liu D, Liu Z, Liu J, Chen Z, Zou B, Cui T, Liu B (2015) Sci Rep 5:13234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trzaskowsk B, Adamowicz L (2009) Theor Chem Acc 124:95–103

    Article  CAS  Google Scholar 

  10. Cottrell TL (1951) Trans Faraday Soc 47:337–342

    Article  CAS  Google Scholar 

  11. Singh KK (1964) Physica 30:211–222

    Article  CAS  Google Scholar 

  12. Ley-Koo E, Cruz SA (1981) J Chem Phys 74:4603–4610

    Article  CAS  Google Scholar 

  13. Sarsa A, Le Sech C (2012) J Phys B At Mol Opt Phys 45:205101

    Article  CAS  Google Scholar 

  14. Micca Longo G, Longo S, Giordano D (2015) Phys Scr 90:025403

    Article  CAS  Google Scholar 

  15. da Silva JF, Silva FR, Drigo Filho E (2016) Int J Quantum Chem 116:497–503

    Article  CAS  Google Scholar 

  16. LeSar R, Herschbach DR (1981) J Phys Chem 85:2084–2798

    Google Scholar 

  17. Pang T (1994) Phys Rev A 49:1709–1713

    Article  CAS  PubMed  Google Scholar 

  18. Cruz SA, Soullard J, Gamaly E (1999) Phys Rev A 60:2207

    Article  CAS  Google Scholar 

  19. Colín-Rodríguez R, Cruz SA (2010) J Phys B At Mol Opt Phys 43:235102

    Article  CAS  Google Scholar 

  20. Powers A, Marsalek O, Xu M, Ulivi L, Colognesi D, Tuckerman ME, Bacic Z (2016) J Phys Chem Lett 7:308

    Article  CAS  PubMed  Google Scholar 

  21. Cruz SA, Soullard J (2004) J Chem Phys Lett 391:138–142

    Article  CAS  Google Scholar 

  22. Jena NK, Tripathy MK, Samanta AK et al (2012) Theor Chem Acc 131:1205

    Article  CAS  Google Scholar 

  23. Kozłoxwska J, Roztoczyńska A, Bartkowiak W (2015) Chem Phys 456:98–105

    Article  CAS  Google Scholar 

  24. Silva FR (2014) Confinamento das moléculas H2 e O2 como modelo para o estudo da ligação ligante-sítio ativo em macromoléculas biológicas. Ph.D Thesis, São Jóse do Rio Preto, SP, Universidade Estadual Paulista (UNESP), Available from: Repositório Institucional UNESP. (in portuguese)

  25. Levine IN (1991) Quantum chemistry. Prentice Hall, New York

    Google Scholar 

  26. Drigo Filho E, Ricotta RM (2002) Phys Lett A 299:137–143

    Article  CAS  Google Scholar 

  27. Schiff LI (1968) Quantum mechanics. McGraw-Hill, New York

    Google Scholar 

  28. Silva FR, Drigo Filho E (2010) Mod Phys Lett A 25:641

    Article  CAS  Google Scholar 

  29. Slater JC (1963) Quantum theory of molecules and solids: electronic structure of molecules. McGraw-Hill, New York

    Google Scholar 

  30. Kolos W, Roothaan CCJ (1960) Rev Mod Phys 32:219–232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo de Oliveira Batael.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batael, H.d., Drigo Filho, E. Ground-state energy for confined H2: a variational approach. Theor Chem Acc 137, 65 (2018). https://doi.org/10.1007/s00214-018-2243-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2243-y

Keywords

Navigation