Skip to main content
Log in

Effect of electron-withdrawing terminal group on BDT-based donor materials for organic solar cells: a theoretical investigation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Rational end group modification has been found as an effective strategy to improve power conversion efficiencies (PCEs) for photovoltaic materials. However, due to different electronic processes competition, various interaction factors must be taken into account to make materials design. Through density functional theory (DFT) and time-dependent DFT (TD-DFT), the effect of electron-withdrawing substitution on benzodithiophene-based donor materials from the open circuit voltage (\( V_{\text{OC}} \)), light absorption, exciton dissociation to charge transport in bulk materials has been investigated. The results point to that strong electron-withdrawing end group remarkably (1) enhances \( V_{\text{OC}} \) due to lowered HOMO energy level; (2) induces photon absorption redshift due to narrow optical gap (Eg); (3) facilitates exciton dissociation because of enhanced intramolecular charge transfer character. However, there is no direct correlation between electron-withdrawing ability and charge transport properties, since steric hindrance, noncovalent interaction and electrostatic interaction altogether have large impact on intermolecular stacking and then charge mobility. Comprehensive factors should be considered to improve PCEs for photovoltaic materials. Impressively, the designed molecule SM8 with dicyanovinyl-capped reveals excellent optical-electron properties, which may be a promising donor for high performance SM-OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou J, Wan X, Liu Y, Zuo Y, Li Z, He G, Long G, Ni W, Li C, Su X, Chen Y (2012) J Am Chem Soc 134(39):16345–16351. https://doi.org/10.1021/ja306865z

    Article  CAS  PubMed  Google Scholar 

  2. Lin Y, Wang J, Li T, Wu Y, Wang C, Han L, Yao YH, Ma W, Zhan XW (2016) J Mater Chem A 4:1486–1494

    Article  CAS  Google Scholar 

  3. Cheng P, Zhan X (2016) Chem Soc Rev 45(9):2544–2582

    Article  CAS  PubMed  Google Scholar 

  4. Ye C, Wang Y, Bi Z, Guo X, Fan Q, Chen J, Ou X, Ma W, Zhang M (2018) High-performance organic solar cells based on a small molecule with thieno[3,2-b]thiophene as π-bridge. Org Electron 53:273–279. https://doi.org/10.1016/j.orgel.2017.12.003

    Article  CAS  Google Scholar 

  5. Liu Y, Chen CC, Hong Z, Gao J, Yang YM, Zhou H, Dou L, Li G, Yang Y (2013) Sci Rep 3:3356. https://doi.org/10.1038/srep03356

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang S, Wang X, Tang A, Huang J, Zhan C, Yao J (2014) Phys Chem Chem Phys 16(10):4664–4671. https://doi.org/10.1039/c3cp54548b

    Article  CAS  PubMed  Google Scholar 

  7. Sun SX, Huo Y, Li MM, Hu X, Zhang HJ, Zhang YW, Zhang YD, Chen XL, Shi ZF, Gong X, Chen Y, Zhang HL (2015) ACS Appl Mater Interfaces 7(36):19914–19922. https://doi.org/10.1021/acsami.5b03488

    Article  CAS  PubMed  Google Scholar 

  8. Kim JH, Park JB, Yang H, Jung IH, Yoon SC, Kim D, Hwang DH (2015) ACS Appl Mater Interfaces 7(43):23866–23875. https://doi.org/10.1021/acsami.5b05248

    Article  CAS  PubMed  Google Scholar 

  9. Cui Y, Li P, Song C, Zhang H (2016) J Phys Chem C 120(51):28939–28950. https://doi.org/10.1021/acs.jpcc.6b09927

    Article  CAS  Google Scholar 

  10. Patra D, Huang TY, Chiang CC, Maturana RO, Pao CW, Ho KC, Wei KH, Chu CW (2013) ACS Appl Mater Interfaces 5(19):9494–9500. https://doi.org/10.1021/am4021928

    Article  CAS  PubMed  Google Scholar 

  11. Jiang B, Yao JN, Zhan ChL (2016) ACS Appl Mater Interfaces 8(39):26058–26065. https://doi.org/10.1021/acsami.6b08407

    Article  CAS  PubMed  Google Scholar 

  12. Leliege A, Le Regent CH, Allain M, Blanchard P, Roncali J (2012) Chem Commun (Camb) 48(71):8907–8909. https://doi.org/10.1039/c2cc33921h

    Article  CAS  Google Scholar 

  13. Jeux V, Demeter D, Leriche P, Roncali J (2013) RSC Adv 3(17):5811. https://doi.org/10.1039/c3ra40966j

    Article  CAS  Google Scholar 

  14. Du J, Fortney A, Washington KE, Bulumulla C, Huang P, Dissanayake D, Biewer MC, Kowalewski T, Stefan MC (2016) ACS Appl Mater Interfaces 8(48):33025–33033. https://doi.org/10.1021/acsami.6b11806

    Article  CAS  PubMed  Google Scholar 

  15. Chen K-W, Lin L-Y, Li Y-H, Li Y-Z, Nguyen TP, Biring S, Liu S-W, Wong K-T (2018) Fluorination effects of A–D–A-type small molecules on physical property and the performance of organic solar cell. Org Electron 52:342–349. https://doi.org/10.1016/j.orgel.2017.11.021

    Article  CAS  Google Scholar 

  16. Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, You J, Yang Y, Chen Y (2011) Spin-coated small molecules for high performance solar cells. Adv Energy Mater 1(5):771–775. https://doi.org/10.1002/aenm.201100230

    Article  CAS  Google Scholar 

  17. Zhang Q, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Li M, Hu Z, Huang F, Cao Y, Liang Z (2015) M Zhang TPRaYC. https://doi.org/10.1038/nphoton.2014.269

    Article  Google Scholar 

  18. Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y (2015) J Am Chem Soc 137(11):3886–3893. https://doi.org/10.1021/jacs.5b00305

    Article  CAS  PubMed  Google Scholar 

  19. Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y (2013) J Am Chem Soc 135(23):8484–8487. https://doi.org/10.1021/ja403318y

    Article  CAS  PubMed  Google Scholar 

  20. Shen S, Jiang P, He C, Zhang J, Shen P, Zhang Y, Yi Y, Zhang Z, Li Z, Li Y (2013) Chem Mater 25(11):2274–2281. https://doi.org/10.1021/cm400782q

    Article  CAS  Google Scholar 

  21. Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Nat Maters 11:44–48. https://doi.org/10.1038/nmat3160

    Article  CAS  Google Scholar 

  22. van der Poll TS, Love JA, Nguyen TQ, Bazan GC (2012) Adv Mater 24(27):3646–3649. https://doi.org/10.1002/adma.201201127

    Article  CAS  PubMed  Google Scholar 

  23. Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J (2016) Chem Rev 116(12):7397–7457. https://doi.org/10.1021/acs.chemrev.6b00176

    Article  CAS  PubMed  Google Scholar 

  24. Kan B, Zhang Q, Li M, Wan X, Ni W, Long G, Wang Y, Yang X, Feng H, Chen Y (2014) J Am Chem Soc 136(44):15529–15532. https://doi.org/10.1021/ja509703k

    Article  CAS  PubMed  Google Scholar 

  25. Qiu B, Yuan J, Xiao X, He D, Qiu L, Zou Y, Zhang ZG, Li Y (2015) ACS Appl Mater Interfaces 7(45):25237–25246. https://doi.org/10.1021/acsami.5b07066

    Article  CAS  PubMed  Google Scholar 

  26. Wang K, Guo B, Xu Z, Guo X, Zhang M, Li Y (2015) ACS Appl Mater Interfaces 7(44):24686–24693. https://doi.org/10.1021/acsami.5b07085

    Article  CAS  PubMed  Google Scholar 

  27. Hendriks KH, Li W, Wienk MM, Janssen RA (2014) J Am Chem Soc 136(34):12130–12136. https://doi.org/10.1021/ja506265h

    Article  CAS  PubMed  Google Scholar 

  28. Lin Y, Li Y, Zhan X (2013) Adv Energy Mater 3(6):724–728

    Article  CAS  Google Scholar 

  29. John P, Perdew KB, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  30. Duan YA, Geng Y, Li HB, Jin JL, Wu Y, Su ZM (2013) J Comput Chem 34(19):1611–1619. https://doi.org/10.1002/jcc.23298

    Article  CAS  PubMed  Google Scholar 

  31. Duan Y-A, Li H-B, Geng Y, Wu Y, Wang G-Y, Su Z-M (2014) Org Electron 15(2):602–613. https://doi.org/10.1016/j.orgel.2013.12.011

    Article  CAS  Google Scholar 

  32. Li S-B, Duan Y-A, Geng Y, Li H-B, Zhang J-Z, Xu H-L, Zhang M, Su Z-M (2014) Phys Chem Chem Phys 16:25799–25808. https://doi.org/10.1039/c4cp03022b

    Article  CAS  PubMed  Google Scholar 

  33. Adamo C, Barone V (1998) J Chem Phys 108(2):664. https://doi.org/10.1063/1.475428

    Article  CAS  Google Scholar 

  34. Truhlar DG, Zhao Y (2004) J Phys Chem C 108:6908–6918. https://doi.org/10.1021/jp048147q

    Article  CAS  Google Scholar 

  35. Becke AD (1996) J Chem Phys 104(3):1040. https://doi.org/10.1063/1.470829

    Article  CAS  Google Scholar 

  36. Liu T, Troisi A (2011) J Phys Chem C 115(5):2406–2415. https://doi.org/10.1021/jp109130y

    Article  CAS  Google Scholar 

  37. Li Y, Pullerits T, Zhao M, Sun M (2011) J Phys Chem C 115(44):21865–21873. https://doi.org/10.1021/jp2040696

    Article  CAS  Google Scholar 

  38. Materials studio (2005) Accelrys Inc., San Diego

  39. Sokolov AN, Atahan-Evrenk S, Mondal R, Akkerman HB, Sanchez-Carrera RS, Granados-Focil S, Schrier J, Mannsfeld SC, Zoombelt AP, Bao Z, Aspuru-Guzik A (2011) Nat Commun 2:437. https://doi.org/10.1038/ncomms1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alberga D, Ciofini I, Mangiatordi GF, Pedone A, Lattanzi G, Roncali J, Adamo C (2017) Chem Mater 29(2):673–681. https://doi.org/10.1021/acs.chemmater.6b04277

    Article  CAS  Google Scholar 

  41. Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  42. Tang X-D, Liao Y, Gao H-Z, Geng Y, Su Z-M (2012) Theoretical study of the bridging effect on the charge carrier transport properties of cyclooctatetrathiophene and its derivatives. J Mater Chem 22(14):6907. https://doi.org/10.1039/c2jm14871d

    Article  CAS  Google Scholar 

  43. Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5003

    Article  CAS  PubMed  Google Scholar 

  44. Nan G, Wang L, Yang X, Shuai Z, Zhao Y (2009) J Chem Phys 130(2):024704. https://doi.org/10.1063/1.3055519

    Article  CAS  PubMed  Google Scholar 

  45. Valeev EF, Coropceanu V, da Silva Filho A, Salman S, Bredas JL (2006) J Am Chem Soc 128:9882–9886

    Article  CAS  PubMed  Google Scholar 

  46. Adamo C, Jacquemin D (2013) Chem Soc Rev 42(3):845–856

    Article  CAS  PubMed  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani VMG, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  48. Lu T, Chen F (2012) J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  49. Eastham ND, Dudnik AS, Harutyunyan B, Aldrich TJ, Leonardi MJ, Manley EF, Butler MR, Harschneck T, Ratner MA, Chen LX, Bedzyk MJ, Melkonyan FS, Facchetti A, Chang RPH, Marks TJ (2017) ACS Energy Lett 2(7):1690–1697. https://doi.org/10.1021/acsenergylett.7b00486

    Article  CAS  Google Scholar 

  50. Loser S, Savoie BM, Bruns CJ, Timalsina A, Leonardi MJ, Smith J, Harschneck T, Turrisi R, Zhou N, Stern CL, Sarjeant AA, Facchetti A, Chang RH, Stupp S, Ratner M, Chen LX, Marks TJ (2017) J Mater Chem A 5:9217–9232. https://doi.org/10.1039/c7ta02037f

    Article  CAS  Google Scholar 

  51. Lin Y, Ma L, Li Y, Liu Y, Zhu D, Zhan X (2013) Adv Energy Mater 3(9):1166–1170. https://doi.org/10.1002/aenm.201300181

    Article  CAS  Google Scholar 

  52. Furukawa S, Komiyama H, Yasuda T (2016) J Phys Chem C 120(38):21235–21241. https://doi.org/10.1021/acs.jpcc.6b06758

    Article  CAS  Google Scholar 

  53. Manninen V, Heiskanen J, Pankov D, Kastinen T, Hukka T, Hormi O, Lemmetyinen H (2014) The effect of diketopyrrolopyrrole (DPP) group inclusion in p-cyanophenyl end-capped oligothiophene used as a dopant in P3HT: pCBM BHJ solar cells. Photochem Photobiol Sci 13(10):1456–1468

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, Chen Y (2011) High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit. Adv Mater 23(45):5387–5391

    Article  CAS  PubMed  Google Scholar 

  55. Fitzner R, Mena-Osteritz E, Mishra A, Schulz G, Reinold E, Weil M, Körner C, Ziehlke H, Elschner C, Leo K (2012) Correlation of π-conjugated oligomer structure with film morphology and organic solar cell performance. J Am Chem Soc 134(27):11064–11067

    Article  CAS  PubMed  Google Scholar 

  56. Ye D, Li X, Yan L, Zhang W, Hu Z, Liang Y, Fang J, Wong W-Y, Wang X (2013) Dithienosilole-bridged small molecules with different alkyl group substituents for organic solar cells exhibiting high open-circuit voltage. J Mater Chem A 1(26):7622–7629

    Article  CAS  Google Scholar 

  57. Steinberger S, Mishra A, Reinold E, Mena-Osteritz E, Müller H, Uhrich C, Pfeiffer M, Bäuerle P (2012) Synthesis and characterizations of red/near-IR absorbing A–D–A–D–A-type oligothiophenes containing thienothiadiazole and thienopyrazine central units. J Mater Chem 22(6):2701–2712

    Article  CAS  Google Scholar 

  58. Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Körner C, Leo K, Riede M, Weil M, Tsaryova O (2011) Dicyanovinyl-substituted oligothiophenes: structure-property relationships and application in vacuum-processed small molecule organic solar cells. Adv Func Mater 21(5):897–910

    Article  CAS  Google Scholar 

  59. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Nat Photonics 6(9):591–595

    Article  CAS  Google Scholar 

  60. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Adv Mater 18(6):789–794. https://doi.org/10.1002/adma.200501717

    Article  CAS  Google Scholar 

  61. Chen XW, Tao SL, Fan C, Chen DC, Zhou L, Lin H, Zheng CJ, Su ShJ (2017) ACS Appl Mater Interfaces 9(35):29907–29916

    Article  CAS  PubMed  Google Scholar 

  62. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7(8):2498–2506. https://doi.org/10.1021/ct200308m

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Key R&D program of China (2017YFA0204702), NSFC (21673247), High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan (Grant No. IDHT20180517), Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds (025185305000), Beijing Municipal natural science Foundation (2182012) and Scientific Research Project of Beijing Educational Committee (KM201610028006). We also heartily thank the State Key Laboratory of Theoretical and Computational Chemistry of Jilin University for providing the computational supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Geng, Yu-Ai Duan or Yi Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, LL., Geng, H., Wang, G. et al. Effect of electron-withdrawing terminal group on BDT-based donor materials for organic solar cells: a theoretical investigation. Theor Chem Acc 137, 63 (2018). https://doi.org/10.1007/s00214-018-2242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2242-z

Keywords

Navigation