Skip to main content
Log in

Predicting light absorption properties of anthocyanidins in solution: a multi-level computational approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A multi-level computational protocol is devised to calculate the absorption spectra in ethanol solution of a series of anthocyanidins relevant for dye-sensitized solar cells. The protocol exploits the high accuracy of second-order multi-reference perturbation theory to correct the results of the more feasible TD-DFT calculations, which were performed on hundreds of configurations sampled from molecular dynamics (MD) trajectories. The latter were purposely carried out with accurate and reliable force fields, specifically parameterized against quantum mechanical data, for each of the investigated dyes. Besides yielding maximum absorption wavelengths very close to the experimental values, the present approach was also capable of predicting reliable band shapes, even accounting for the subtle differences observed along the homolog series. Finally, the atomistic description achieved by MD simulations allowed for a deep insight into the different micro-solvation patterns around each anthocyanidin and their effects on the resulting dye’s properties. This work can be considered as a step toward the implementation of a computational protocol able to simulate the whole system formed by the organic dye and its heterogeneous embedding that constitutes dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737

    Article  Google Scholar 

  2. Monat JE, Rodriguez JH, McCusker JK (2002) Ground- and Excited-State Electronic Structures of the Solar Cell Sensitizer Bis(4,4′-dicarboxylato-2,2′-bipyridine)bis(isothiocyanato)ruthenium(II). J Phys Chem A 106:7399

    Article  CAS  Google Scholar 

  3. De Angelis F, Fantacci S, Selloni A, Grätzel M, Nazeeruddin MK (2007) Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Lett 7:3189–3195

    Article  Google Scholar 

  4. Graetzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798

    Article  Google Scholar 

  5. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2011) First-principles modeling of the adsorption geometry and electronic structure of Ru(II) Dyes on extended TiO2 substrates for dye-sensitized solar cell applications. J Phys Chem C 114:6054–6061

    Article  Google Scholar 

  6. Bignozzi CA, Argazzi R, Boaretto R, Busatto E, Carli S, Ronconi F, Caramori S (2013) The role of transition metal complexes in dye sensitized solar devices. Coord Chem Rev 257:1472–1492

    Article  CAS  Google Scholar 

  7. Kuang D, Comte P, Zakeeruddin SM, DlP Hagberg, Karlsson KM, Sun L, Nazeeruddin MK, Grätzel M (2011) Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte. Sol Energy 85:1189

    Article  CAS  Google Scholar 

  8. Odobel F, Le Pleux L, Pellegrin Y, Blart E (2010) New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Acc Chem Res 43:1063–1071

    Article  CAS  Google Scholar 

  9. Pastore M, Fantacci S, De Angelis F (2010) Ab initio determination of ground and excited state oxidation potentials of organic chromophores for dye-sensitized solar cells. J Phys Chem C 114:22742

    Article  CAS  Google Scholar 

  10. Plannels M, Pellejà L, Clifford JN, Pastore M, De Angelis F, López N, Marder S, Palomares E (2011) Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor–acceptor π-conjugated organic dyes in mesoscopic TiO2 sensitized solar cells. Energy Environ Sci 4:1820

    Article  Google Scholar 

  11. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595

    Article  CAS  Google Scholar 

  12. Li L-L, Diau EW-G (2013) Porphyrin-sensitized solar cells. Chem Soc Rev 42:291–304

    Article  CAS  Google Scholar 

  13. Jinchu I, Sreekala CO, Sreelatha KS (2014) Dye sensitized solar cell using natural dyes as chromophores—review. In: Pandikumar A, Jothilakshmi R (eds) Materials science forum, vol 771. Trans Tech Publications Ltd, Laublsrutistr 24, Ch-8717 Stafa-Zurich, Switzerland, pp 39–51. doi:10.4028/www.scientific.net/MSF.771.39

  14. Narayan MR (2012) Review: dye sensitized solar cells based on natural photosensitizers. Renev Sust Energ Rev 16:208–215

    CAS  Google Scholar 

  15. Senthil TS, Muthukumarasamy N, Velauthapillai D, Agilan S, Thambidurai M, Balasundaraprabhu R (2011) Natural dye (cyanidin 3-o-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte. Renew Energ 36:2484–2488

    Article  CAS  Google Scholar 

  16. Castañeda-Ovando A, Pacheco-Hernández MdL, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  Google Scholar 

  17. Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    CAS  Google Scholar 

  18. Halbwirth H (2010) The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. Int J Mol Sci 11:595–621

    Article  CAS  Google Scholar 

  19. Rustioni L, Di Meo F, Guillaume M, Failla O, Trouillas P (2013) Tuning color variation in grape anthocyanins at the molecular scale. Food Chem 141:4349–4357

    Article  CAS  Google Scholar 

  20. Trouillas P, Di Meo F, Gierschner J, Linares M, Sancho-García JC, Otyepka M (2015) Optical properties of wine pigments: theoretical guidelines with new methodological perspectives. Tetrahedron 71:3079–3088

    Article  CAS  Google Scholar 

  21. Shahid M, Shahid ul I, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Article  CAS  Google Scholar 

  22. Calogero G, Marco GD (2008) Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92:1341–1346

    Article  CAS  Google Scholar 

  23. Gómez-Ortíz NM, Vázquez-Maldonado IA, Pérez-Espadas AR, Mena-Rejón GJ, Azamar-Barrios JA, Oskam G (2010) Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol Energy Mater Sol Cells 94:40–44

    Article  Google Scholar 

  24. Ekanayake P, Kooh MRR, Kumara NTRN, Lim A, Petra MI, Voo NY, Lim CM (2013) Combined experimental and DFT–TDDFT study of photo-active constituents of Canarium odontophyllum for DSSC application. Chem Phys Lett 585:121–127

    Article  CAS  Google Scholar 

  25. Ludin NA, Mahmoud AMA-A, Mohamad AB, Kadhum AAH, Sopian K, Karim NSA (2014) Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renev Sust Energ Rev 31:386–396

    Article  CAS  Google Scholar 

  26. Goto T, Kondo T (1991) Struktur und molekulare Stapelung von Anthocyanen—Variation der Blutenfarben. Angew Chem 103:17–33

    Article  CAS  Google Scholar 

  27. Di Meo F, Sancho Garcia JC, Dangles O, Trouillas P (2012) Highlights on anthocyanin pigmentation and copigmentation: a matter of flavonoid π-stacking complexation to be described by DFT-D. J Chem Theor Comput 8:2034–2043

    Article  Google Scholar 

  28. Brouillard R, Mazza G, Saad Z, Albrecht-Gary AM, Cheminat A (1989) The co-pigmentation reaction of anthocyanins: a microprobe for the structural study of aqueous solutions. J Am Chem Soc 111:2604–2610

    Article  CAS  Google Scholar 

  29. Harborne JB (1958) Spectral methods of characterizing anthocyanins. Biochem J 70:22–28

    Article  CAS  Google Scholar 

  30. Dai Q, Rabani J (2002) Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes. J Photochern Photobiol A 148:17–24

    Article  CAS  Google Scholar 

  31. Liu Z (2008) Theoretical studies of natural pigments relevant to dye-sensitized solar cells. J Mol Struct THEOCHEM 862:44–48

    Article  CAS  Google Scholar 

  32. Calzolari A, Varsano D, Ruini A, Catellani A, Tel-Vered R, Yildiz HB, Ovits O, Willner I (2009) Optoelectronic properties of natural cyanin dyes. J Phys Chem A 113:8801–8810

    Article  CAS  Google Scholar 

  33. Ge X, Calzolari A, Baroni S (2015) Optical properties of anthocyanins in the gas phase. Chem Phys Lett 618:24–29

    Article  CAS  Google Scholar 

  34. Anouar EH, Gierschner J, Duroux J-L, Trouillas P (2012) UV/Visible spectra of natural polyphenols: a time-dependent density functional theory study. Food Chem 131:79–89

    Article  CAS  Google Scholar 

  35. Ge X, Timrov I, Binnie S, Biancardi A, Calzolari A, Baroni S (2015) Accurate and inexpensive prediction of the color optical properties of anthocyanins in solution. J Phys Chem A 119:3816–3822

    Article  CAS  Google Scholar 

  36. Soto-Rojo R, Baldenebro-López J, Flores-Holguín N, Glossman-Mitnik D (2014) Comparison of several protocols for the computational prediction of the maximum absorption wavelength of chrysanthemin. J Mol Model 20:2378

    Article  Google Scholar 

  37. Millot M, Di Meo F, Tomasi S, Boustie J, Trouillas P (2012) Photoprotective capacities of lichen metabolites: a joint theoretical and experimental study. J Photochem Photobiol B 111:17–26

    Article  CAS  Google Scholar 

  38. Malcıoğlu OB, Calzolari A, Gebauer R, Varsano D, Baroni S (2011) Dielectric and thermal effects on the optical properties of natural dyes: a case study on solvated cyanin. J Am Chem Soc 133:15425–15433

    Article  Google Scholar 

  39. Sakata K, Saito N, Honda T (2006) Ab initio study of molecular structures and excited states in anthocyanidins. Tetrahedron 62:3721–3731

    Article  CAS  Google Scholar 

  40. Barone V, Ferretti A, Pino I (2012) Absorption spectra of natural pigments as sensitizers in solar cells by TD-DFT and MRPT2: protonated cyanidin. Phys Chem Chem Phys 14(46):16130–16137

    Article  CAS  Google Scholar 

  41. Avila Ferrer FJ, Cerezo J, Stendardo E, Improta R, Santoro F (2013) Insights for an accurate comparison of computational data to experimental absorption and emission spectra: beyond the vertical transition approximation. J Chem Theory Comput 9:2072–2082

    Article  CAS  Google Scholar 

  42. Muniz-Miranda F, Pedone A, Battistelli G, Montalti M, Bloino J, Barone V (2015) Benchmarking TD-DFT against vibrationally resolved absorption spectra at room temperature: 7-aminocoumarins as test cases. J Chem Theory Comput 11:5371–5384

    Article  CAS  Google Scholar 

  43. Charaf-Eddin A, Cauchy T, Fc-X Felpin, Jacquemin D (2014) Vibronic spectra of organic electronic chromophores. RSC Adv 4:55466–55472

    Article  CAS  Google Scholar 

  44. Lopez GV, Chang C-H, Johnson PM, Hall GE, Sears TJ, Markiewicz B, Milan M, Teslja A (2012) What is the best DFT functional for vibronic calculations? A comparison of the calculated vibronic structure of the S 1-S 0 transition of phenylacetylene with cavity ringdown band intensities. J Phys Chem A 116:6750–6758

    Article  CAS  Google Scholar 

  45. Jacquemin D, Brémond E, Al Planchat, Ciofini I, Adamo C (2011) TD-DFT vibronic couplings in anthraquinones: from basis set and functional benchmarks to applications for industrial dyes. J Chem Theory Comput 7:1882–1892

    Article  CAS  Google Scholar 

  46. Dierksen M, Grimme S (2004) The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of “Exact” Hartree–Fock exchange. J Phys Chem A 108:10225–10237

    Article  CAS  Google Scholar 

  47. Cacelli I, Ferretti A, Prampolini G (2014) Perturbative multireference configuration interaction (CI-MRPT2) calculations in a focused dynamical approach: a computational study of solvatochromism in pyrimidine. J Phys Chem A 119(21):5250–5259

    Article  Google Scholar 

  48. De Mitri N, Monti S, Prampolini G, Barone V (2013) Absorption and emission spectra of a flexible dye in solution: a computational time-dependent approach. J Chem Theory Comput 9:4507–4516

    Article  Google Scholar 

  49. De Mitri N, Prampolini G, Monti S, Barone V (2014) Structural, dynamic and photophysical properties of a fluorescent dye incorporated in an amorphous hydrophobic polymer bundle. Phys Chem Chem Phys 16:16573–16587

    Article  Google Scholar 

  50. Pedone A, Prampolini G, Monti S, Barone V (2011) Realistic modeling of fluorescent dye-doped silica nanoparticles: a step toward the understanding of their enhanced photophysical properties. Chem Mater 23:5016–5023

    Article  CAS  Google Scholar 

  51. Marenich AV, Cramer CJ, Truhlar DG (2015) Electronic absorption spectra and solvatochromic shifts by the vertical excitation model: solvated clusters and molecular dynamics sampling. J Phys Chem B 119:958–967

    Article  CAS  Google Scholar 

  52. Cerezo J, Prampolini G, Santoro F (2015) Comparing classical approaches with empirical or quantum-mechanically derived force-fields for the simulations of electronic lineshapes: application to coumarin dyes. Theor Chem Acc 135(5):1–21

    Google Scholar 

  53. Cacelli I, Prampolini G (2007) Parametrization and validation of intramolecular force fields derived from DFT calculations. J Chem Theor Comput 3:1803–1817

    Article  CAS  Google Scholar 

  54. Barone V, Cacelli I, De Mitri N, Licari D, Monti S, Prampolini G (2013) JOYCE and ULYSSES: integrated and user-friendly tools for the parameterization of intramolecular force fields from quantum mechanical data. Phys Chem Chem Phys 15:3736–3751

    Article  CAS  Google Scholar 

  55. Cacelli I, Ferretti A, Prampolini G (2015) Perturbative multireference configuration interaction (CI-MRPT2) calculations in a focused dynamical approach: a computational study of solvatochromism in pyrimidine. J Phys Chem A 119:5250–5259

    Article  CAS  Google Scholar 

  56. Cacelli I, Ferretti A, Prampolini G, Barone V (2015) BALOO: a fast and versatile code for accurate multireference variational/perturbative calculations. J Chem Theor Comput 11:2024–2035

    Article  CAS  Google Scholar 

  57. AlD Laurent, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113:2019–2039

    Article  Google Scholar 

  58. Jacquemin D, Bahers TL, Adamo C, Ciofini I (2012) What is the best atomic charge model to describe through-space charge-transfer excitations? Phys Chem Chem Phys 14:5383–5388

    Article  CAS  Google Scholar 

  59. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  61. Gordon MS, Schmidt MW (2005) GAMESS. Theory and Applications of Computational Chemistry: the first forty years. Elsevier, Amsterdam

    Google Scholar 

  62. Cimiraglia R (1984) Second order perturbation correction to ci energies by use of diagrammatic techniques: an improvement to the Cipsi algorithm. J Chem Phys 83:174

    Google Scholar 

  63. Jorgensen WL, Maxwell DS, Tirado-rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 7863:11225–11236

    Article  Google Scholar 

  64. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) Charge Model 5: an extension of hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J Chem Theory Comput 8:527–541

    Article  CAS  Google Scholar 

  65. Aaqvist J (1990) Ion-water interaction potentials derived from free energy perturbation simulations. J Phys Chem 94:8021–8024

    Article  CAS  Google Scholar 

  66. Caleman C, van Maaren PJ, Hong M, Hub JS, Costa LT, van der Spoel D (2012) Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J Chem Theory Comput 8:61–74

    Article  CAS  Google Scholar 

  67. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  68. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  Google Scholar 

  69. Parrinello M (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Italian Ministry of Instruction, University and Research (MIUR), through PRIN 2010–11, 2010PFLRJR (PROxi) and 2010FM738P. Dr. Javier Cerezo is gratefully acknowledged by GP for the many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro Ferretti or Giacomo Prampolini.

Additional information

Published as part of the special collection of articles “Health & Energy from the Sun”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacelli, I., Ferretti, A. & Prampolini, G. Predicting light absorption properties of anthocyanidins in solution: a multi-level computational approach. Theor Chem Acc 135, 156 (2016). https://doi.org/10.1007/s00214-016-1911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1911-z

Keywords

Navigation